如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)若P在坐標(biāo)軸上,且以點(diǎn)E、F、C、P為頂點(diǎn)的四邊形是梯形,求點(diǎn)P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.
分析:(1)△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出.
(2)由于P點(diǎn)位置不能確定,故應(yīng)分點(diǎn)P在x軸上與y軸上兩種情況進(jìn)行討論;
(3)作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).求出線段E′F′的長度,就是四邊形MNFE的周長的最小值.
解答:解:(1)E(3,1);F(1,2).

(2)如圖1所示,當(dāng)點(diǎn)P在y軸上時,
∵EF與OC不可能平行,
∴PE∥CF,
∵E(3,1),
∴P(0,1);
當(dāng)點(diǎn)P在x軸上時,如圖2所示,
∵CF∥x軸,點(diǎn)E(3,1),
∴EF∥PC,
設(shè)P(n,0),直線EF的解析式為y=kx+b(k≠0),
∵E(3,1),F(xiàn)(1,2),
3k+b=1
k+b=2
,解得
k=-
1
2
b=
5
2
,
∴直線EF的解析式為y=-
1
2
x+
5
2
,
∴設(shè)直線PC的解析式為y=-
1
2
x+a,
∵C(0,2),
∴a=2,
∴直線PC的解析式為y=-
1
2
x+2,
把P(n,0),代入得,-
1
2
n+2=0,解得n=4,
∴P(4,0).
綜上所述,P(0,1)或(4,0);

(3)存在點(diǎn)M,N,使得四邊形MNFE的周長最。
如圖3,作點(diǎn)E關(guān)于x軸的對稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對稱點(diǎn)F′,
連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).
∴E′(3,-1),F(xiàn)′(-1,2),NF=NF′,ME=ME′.
∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=
32+42
=5.
又∵EF=
5

∴FN+MN+ME+EF=5+
5
,
此時四邊形MNFE的周長最小值是5+
5
點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)解析式,求線段的和最小的問題基本的解決思路是根據(jù)對稱轉(zhuǎn)化為兩點(diǎn)之間的距離的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向精英家教網(wǎng)A點(diǎn)運(yùn)動,E為AB上一動點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動.
(1)試寫出多邊形ODEBC的面積S(cm2)與運(yùn)動時間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時,在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)在某一時刻將△BED沿著BD翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時時間t的值.若此時在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長最小,試求出此時點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系、已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,若在y軸上存在點(diǎn)P,且滿足FE=FP,則P點(diǎn)坐標(biāo)為
(0,4),(0,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OC所在的直線為x軸,OA所在的直線為y軸,建立平面精英家教網(wǎng)直角坐標(biāo)系.已知OA=6,OC=4,在OA上取一點(diǎn)D,將△BDA沿BD翻折,點(diǎn)A恰好落在BC邊上的點(diǎn)E處.
(1)試判斷四邊形ABED的形狀,并說明理由;
(2)若點(diǎn)F是AB的中點(diǎn),設(shè)頂點(diǎn)為E的拋物線的右側(cè)部分交x軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)精英家教網(wǎng)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(Ⅰ)直接寫出點(diǎn)E、F的坐標(biāo);
(Ⅱ)若M為x軸上的動點(diǎn),N為y軸上的動點(diǎn),當(dāng)四邊形MNFE的周長最小時,求出點(diǎn)M、N的坐標(biāo),并求出周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案