如圖1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形紙片DOE的頂點(diǎn)O與邊AB的中點(diǎn)重合,OD交BC于點(diǎn)F,OE經(jīng)過點(diǎn)C,且∠DOE=∠B.
(1)證明△COF是等腰三角形,并求出CF的長;
(2)將扇形紙片DOE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),OD,OE與邊AC分別交于點(diǎn)M,N(如圖2),當(dāng)CM的長是多少時(shí),△OMN與△BCO相似?
解:(1)∵∠ACB=90°,點(diǎn)O是AB的中點(diǎn),
∴OC=0B=OA=5.
∴∠OCB=∠B,∠ACO=∠A.
∵∠DOE=∠B,
∴∠FOC=∠OCF.
∴FC=FO.
∴△COF是等腰三角形.
過點(diǎn)F作FH⊥OC,垂足為H,如圖1,
∵FC=FO,F(xiàn)H⊥OC,
∴CH=OH=,∠CHF=90°.
∵∠HCF=∠B,∠CHF=∠BCA=90°,
∴△CHF∽△BCA.
∴=.
∵CH=,AB=10,BC=6,
∴CF=.
∴CF的長為.
(2)①若△OMN∽△BCO,如圖2,
則有∠NMO=∠OCB.
∵∠OCB=∠B,
∴∠NMO=∠B.
∵∠A=∠A,
∴△AOM∽△ACB.
∴=.
∵∠ACB=90°,AB=10,BC=6,
∴AC=8.
∵AO=5,AC=8,AB=10,
∴AM=.
∴CM=AC﹣AM=.
②若△OMN∽△BOC,如圖3,
則有∠MNO=∠OCB.
∵∠OCB=∠B,
∴∠MNO=∠B.
∵∠ACO=∠A,
∴△CON∽△ACB.
∴==.
∵BC=6,AB=10,AC=8,CO=5,
∴ON=,CN=.
過點(diǎn)M作MG⊥ON,垂足為G,如圖3,
∵∠MNO=∠B,∠MON=∠B,
∴∠MNO=∠MON.
∴MN=MO.
∵M(jìn)G⊥ON,即∠MGN=90°,
∴NG=OG=.
∵∠MNG=∠B,∠MGN=∠ACB=90°,
∴△MGN∽△ACB.
∴=.
∵GN=,BC=6,AB=10,
∴MN=.
∴CM=CN﹣MN=﹣=.
∴當(dāng)CM的長是或時(shí),△OMN與△BCO相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列運(yùn)算正確的是( )
| A. | (﹣2mn)2=4m2n2 | B. | y2+y2=2y4 | C. | (a﹣b)2=a2﹣b2 | D. | m2+m=m3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)D是線段BC的中點(diǎn),分別以點(diǎn)B,C為圓心,BC長為半徑畫弧,兩弧相交于點(diǎn)A,連接AB,AC,AD,點(diǎn)E為AD上一點(diǎn),連接BE,CE.
(1)求證:BE=CE;
(2)以點(diǎn)E為圓心,ED長為半徑畫弧,分別交BE,CE于點(diǎn)F,G.若BC=4,∠EBD=30°,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩支儀仗隊(duì)的隊(duì)員人數(shù)相同,平均身高相同,身高的方差分別為S2甲=0.9,S2乙=1.1,則甲、乙兩支儀仗隊(duì)的隊(duì)員身高更整齊的是 (填“甲”或“乙”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(2,1),與x軸交于點(diǎn)B.
(1)求k和b的值;
(2)連接OA,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將二次函數(shù)y=x2的圖象向右平移1個(gè)單位,再向上平移2個(gè)單位后,所得圖象的函數(shù)表達(dá)式是( 。
| A. | y=(x﹣1)2+2 | B. | y=(x+1)2+2 | C. | y=(x﹣1)2﹣2 | D. | y=(x+1)2﹣2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com