【題目】如圖,△ABC中,AB=AC,AD是∠BAC的平分線,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是(

A.2對
B.3對
C.4對
D.5對

【答案】C
【解析】解:∵AB=AC,AD是∠BAC的平分線,
∴∠CAD=∠BAD,
∴AD⊥BC,BD=CD,
在△ACD和△ABD中,

∴△ACD≌△ABD(SAS);
在△COD和△BOD中,

∴△COD≌△BOD(SAS),
∴OB=OC,
在△AOC和△AOB中,
,
∴△OAC≌△OAB(SSS);
∵EF是AC的垂直平分線,
∴OA=OC,∠OEA=∠OEC=90°,
在Rt△OAE和Rt△OCE中,

∴Rt△OAE≌Rt△OCE(HL).
故選C.
【考點精析】掌握線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)是解答本題的根本,需要知道垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明從家到學校的路程為3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小時行3千米.平路每小時行4千米,下坡路每小時行5千米.那么小明從家到學校用一個小時,從學校到家要44分鐘,求小明家到學校上坡路、平路、下坡路各是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線a、b都與直線c相交,給出下列條件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判斷a∥b的條件是(

A.①③
B.②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)共4個數(shù),其平均數(shù)為5,極差是6,則下列滿足條件的一組數(shù)據(jù)是( 。

A. 0,8,6,6 B. 1,5,5,7 C. 1,7,6,6 D. 3,5,6,6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一元二次方程x2+3=x化為一般形式后,二次項系數(shù)和一次項系數(shù)分別為( )
A.0、3
B.0、1
C.1、3
D.1、﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)10,13,916,13,10,13的眾數(shù)與平均數(shù)的和是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直線上,連接EC.求證:EC⊥BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程(2x+3)(x﹣1)=1的解的情況是(
A.有兩個不相等的實數(shù)根
B.沒有實數(shù)根
C.有兩個相等的實數(shù)根
D.有一個實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A. x2+x3=x5 B. 2x2-x2=1 C. x2·x3=x6 D. x2·x3=x5

查看答案和解析>>

同步練習冊答案