如圖所示,已知⊙和⊙都經(jīng)過A,B兩點,經(jīng)過點A的直線CD與⊙交于點C,與⊙交于點D,經(jīng)過點B的直線EF與⊙交于點E,與⊙交于點F.求證CE∥DF.

答案:略
解析:

證明,如圖所示,連接AB.∵四邊形CEBA是圓內(nèi)接四邊形,∴∠1=E.∵四邊形ABFD是圓內(nèi)接四邊形,∴∠1+∠F=180°,∴∠E+∠F=180°,∴CEDF


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知△ABC和△DCE均是等邊三角形,點B,C,E在同一條直線上,AE與BD與BD交于點O,AE與CD交于點G,AC與BD交于點F,連接OC,F(xiàn)G,其中正確結論的個數(shù)是( 。
①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知⊙O和直線L,過圓心O作OP⊥L,P為垂足,A,B,C為直線L上三個點,且PA=2cm,PB=3cm,PC=4cm,若⊙O的半徑為5cm,OP=4cm,判斷A,B,C三點與⊙O的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖所示,已知△ABC和直線MN.求作:△A′B′C′,使△A′B′C′和△ABC關于直線MN對稱.(不要求寫作法,只保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖所示,已知△ACM和△CBN都是等邊三角形,點A、C、B在同一直線上,連接AN、MB.
(1)求證:AN=BM;
(2)若等邊三角形CBN繞頂點C順時針旋轉后(旋轉角α<180°),此時AN與BM是否還相等?若相等,給出證明;若不相等,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知△ABC和旋轉中心點O及點A的對應點D,請畫出△ABC旋轉后的圖形△DEF.

查看答案和解析>>

同步練習冊答案