【題目】某校為了解八年級(jí)男生“立定跳遠(yuǎn)”成績(jī)的情況,隨機(jī)選取該年級(jí)部分男生進(jìn)行測(cè)試,以下是根據(jù)測(cè)試成績(jī)繪制的統(tǒng)計(jì)圖表的一部分.
成績(jī)等級(jí) | 頻數(shù)(人) | 頻率 |
優(yōu)秀 | 15 | 0.3 |
良好 | ||
及格 | ||
不及格 | 5 |
根據(jù)以上信息,解答下列問(wèn)題
(1)被測(cè)試男生中,成績(jī)等級(jí)為“優(yōu)秀”的男生人數(shù)為 人,成績(jī)等級(jí)為“及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比為 %;
(2)被測(cè)試男生的總?cè)藬?shù)為 人,成績(jī)等級(jí)為“不及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比為 %;
(3)若該校八年級(jí)共有180名男生,根據(jù)調(diào)查結(jié)果,估計(jì)該校八年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù).
【答案】(1)15,90;(2)50,10;(3)72人
【解析】
(1)由統(tǒng)計(jì)圖表可知,成績(jī)等級(jí)為“優(yōu)秀”的男生人數(shù)為15人,被測(cè)試男生總數(shù)15÷0.3=50(人),成績(jī)等級(jí)為“及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比:
(2)被測(cè)試男生總數(shù)15÷0.3=50(人),成績(jī)等級(jí)為“不及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比:
(3)由(1)(2)可知,優(yōu)秀30%,及格20%,不及格10%,則良好40%,該校八年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù)180×40%=72(人).
解:(1)由統(tǒng)計(jì)圖表可知,成績(jī)等級(jí)為“優(yōu)秀”的男生人數(shù)為15人,
被測(cè)試男生總數(shù)(人),
成績(jī)等級(jí)為“及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比:,
故答案為15,90;
(2)被測(cè)試男生總數(shù)(人),
成績(jī)等級(jí)為“不及格”的男生人數(shù)占被測(cè)試男生總?cè)藬?shù)的百分比:,
故答案為50,10;
(3)由(1)(2)可知,優(yōu)秀,及格,不及格,則良好,
該校八年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù)(人)
答:該校八年級(jí)男生成績(jī)等級(jí)為“良好”的學(xué)生人數(shù)72人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y=kx+b與雙曲線y=(x>0)交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)E,已知點(diǎn)A(1,3),點(diǎn)C(4,0).
(1)求直線l1和雙曲線的解析式;
(2)將△OCE沿直線l1翻折,點(diǎn)O落在第一象限內(nèi)的點(diǎn)H處,求點(diǎn)H的坐標(biāo);
(3)如圖,過(guò)點(diǎn)E作直線l2:y=3x+4交x軸的負(fù)半軸于點(diǎn)F,在直線l2上是否存在點(diǎn)P,使得S△PBC=S△OBC?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC中,∠C=90°,E為BC邊中點(diǎn).
(1)尺規(guī)作圖:以AC為直徑,作⊙O,交AB于點(diǎn)D(保留作圖痕跡,不需寫(xiě)作法).
(2)連結(jié)DE,求證:DE為⊙O的切線;
(3)若AC=5,DE=,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接連接AD,BC、點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,證明你的結(jié)論;
(3)請(qǐng)直接寫(xiě)出線段OH的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,是上一點(diǎn),點(diǎn)從點(diǎn)沿折線運(yùn)動(dòng)到點(diǎn)時(shí)停止;點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,速度均為每秒1個(gè)單位長(zhǎng)度.如果點(diǎn),同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為,已知與的函數(shù)圖象如圖2所示,有以下結(jié)論:
①;
②;
③當(dāng)時(shí),;
④當(dāng)時(shí),是等腰三角形;
⑤當(dāng)時(shí),.
其中正確的有( ).
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).
(1)求直線和反比例函數(shù)的解析式;
(2)已知點(diǎn)是反比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),求點(diǎn)到直線距離最短時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C = 90°,點(diǎn)O是斜邊AB上一定點(diǎn),到點(diǎn)O的距離等于OB的所有點(diǎn)組成圖形W,圖形W與AB,BC分別交于點(diǎn)D,E,連接AE,DE,∠AED=∠B.
(1)判斷圖形W與AE所在直線的公共點(diǎn)個(gè)數(shù),并證明.
(2)若,,求OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去…,則正方形AnBnCnDn的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,∠B=90°,,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接將繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為.
問(wèn)題發(fā)現(xiàn):
當(dāng)時(shí),_____;當(dāng)時(shí),_____.
拓展探究:
試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
問(wèn)題解決:
當(dāng)旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫(xiě)出線段BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com