【題目】在中,,,過點C做直線,P為直線l上一點,且,則點P到BC所在直線的距離是______.
【答案】或
【解析】
如圖1,延長BC,作,交點為D,延長CA,作于點E,可得四邊形CDPE是矩形,則,;中,,,所以,可求出,,又因為;所以,在直角中,可運用勾股定理求得DP的長即為點P到BC的距離;
如圖2,延長AC,做交點為D,,交點為E,可得四邊形CDPE是矩形,則,;中,,,所以,可求出,,又因為;所以,在直角中,可運用勾股定理求得DP的長即為點P到BC的距離
如圖1,延長BC,作,交點為D,延長CA,作于點E,
,
四邊形CDPE是矩形,
,,
在中,,,.
,
,
,,
,
設,
在直角中,,
,
解得,
.
如圖2,作于D,,交AC延長線于E,
在中,,,.
,,
,
,
在直角中,,
同理:四邊形CDPE是矩形,
,,
設,
在直角中,,
,
解得.
,
故點P到BC所在直線的距離是或.
故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點為,頂點為.
(1)求該二次函數(shù)的解析式及點,的坐標;
(2)點是軸上的動點,
①求的最大值及對應的點的坐標;
②設是軸上的動點,若線段與函數(shù)的圖像只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(a﹣1)x2+2x+a+1=0.
(1)若該方程有一根為0,求a的值及方程的另一根;
(2)當a為何值時,方程僅有一個實數(shù)根?求出此時a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。
A. 2條 B. 4條 C. 5條 D. 6條
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E是BD上一點,AE的延長線交CD于F,交BC的延長線于G,M是FG的中點,連接EC.
(1)求證:∠1=∠2;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一菱形紙片,,將該菱形紙片折疊,使點恰好與的中點重合,折痕為,點、分別在邊、上,聯(lián)結,那么的值為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關系如圖所示.
(1)求與的函數(shù)關系式,并寫出的取值范圍;
(2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.
(1)表示出所有可能出現(xiàn)的結果;
(2)小黃和小石做游戲,制定了兩個游戲規(guī)則:
規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.
規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.
小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】經(jīng)過點A(4,1)的直線與反比例函數(shù)y=的圖象交于點A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達式;
(3)在(2)的條件下,點P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點P的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com