【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(40),C點(diǎn)的坐標(biāo)為(0,6),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位的速度沿著O→A→B→C→O的路線(xiàn)移動(dòng)在點(diǎn)P移動(dòng)過(guò)程中,當(dāng)P點(diǎn)到x軸的距離為5個(gè)單位時(shí),點(diǎn)P移動(dòng)的時(shí)間為________

【答案】秒或

【解析】

根據(jù)點(diǎn)Px軸的距離為5,可知共有兩種情況:PAB邊上或POC邊上,進(jìn)行分類(lèi)討論,根據(jù)點(diǎn)P的運(yùn)動(dòng)方向以及距離計(jì)算得到點(diǎn)的運(yùn)動(dòng)時(shí)間即可.

解:根據(jù)題意可知,點(diǎn)P距離x軸的距離為5時(shí)點(diǎn)P的坐標(biāo)為(4,5)或(0,5

當(dāng)P的坐標(biāo)為(4,5)時(shí),PAB邊上,運(yùn)動(dòng)的距離為4+5=9,所以運(yùn)動(dòng)時(shí)間為

當(dāng)P的坐標(biāo)為(0,5)時(shí),POC邊上,運(yùn)動(dòng)的距離為4+6+4+1=15,所以運(yùn)動(dòng)時(shí)間為

∴點(diǎn)P的運(yùn)動(dòng)時(shí)間為.

故答案為秒或

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)y=ax2+bx+c(a≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),有下列結(jié)論:①2a+b=0,②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,④當(dāng)y<0時(shí),﹣2<x<4,其中正確的是( 。

A. ②③ B. ①③ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ABC30°,AB4AC4,則BC____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建立適當(dāng)?shù)淖鴺?biāo)系,運(yùn)用函數(shù)知識(shí)解決下面的問(wèn)題:

如圖,是某條河上的一座拋物線(xiàn)形拱橋,拱橋頂部點(diǎn)E到橋下水面的距離EF3米時(shí),水面寬AB6米,一場(chǎng)大雨過(guò)后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時(shí)水位上升了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+cx軸交于點(diǎn)A(﹣1,0)、B(3,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸為直線(xiàn)x=1,有下列四個(gè)判斷:

①關(guān)于x的一元二次方程ax2+bx+c=0的兩個(gè)根分別是x1=﹣1,x2=3;

a﹣b+c=0;

③若拋物線(xiàn)上有三個(gè)點(diǎn)分別為(﹣2,y1)、(1,y2)、(2,y3),則y1<y2<y3;

④當(dāng)OC=3時(shí),點(diǎn)P為拋物線(xiàn)對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),則△PCA的周長(zhǎng)的最小值是,

上述四個(gè)判斷中正確的 有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有長(zhǎng)為24m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度a10m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬ABxm,面積為Sm2

1)求Sx的函數(shù)關(guān)系式;

2)如果要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?

3)能?chē)擅娣e比45 m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說(shuō)明圍法;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】企業(yè)的污水處理有兩種方式:一種是輸送到污水廠進(jìn)行集中處理,另一種是通過(guò)企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時(shí)進(jìn)行.16月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿(mǎn)足的函數(shù)關(guān)系如下表:

 月份x(月)

 1

 2

3

 4

5

6

 輸送的污水量y1(噸)

 12000

 6000

 4000

 3000

 2400

2000

712月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿(mǎn)足二次函數(shù)關(guān)系式為y2=ax2+c(a≠0).其圖象如圖所示.16月,污水廠處理每噸污水的費(fèi)用:z1(元)與月份x之間滿(mǎn)足函數(shù)關(guān)系式:z1=x,該企業(yè)自身處理每噸污水的費(fèi)用:z2(元)與月份x之間滿(mǎn)足函數(shù)關(guān)系式:z2=x﹣x2;712月,污水廠處理每噸污水的費(fèi)用均為2元,該企業(yè)自身處理每噸污水的費(fèi)用均為1.5元.

(1)請(qǐng)觀察題中的表格和圖象,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),分別直接寫(xiě)出y1,y2x之間的函數(shù)關(guān)系式;

(2)請(qǐng)你求出該企業(yè)去年哪個(gè)月用于污水處理的費(fèi)用W(元)最多,并求出這個(gè)最多費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知拋物線(xiàn)y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(0,3)、B(1,0),其對(duì)稱(chēng)軸為直線(xiàn)l:x=2,過(guò)點(diǎn)AACx軸交拋物線(xiàn)于點(diǎn)C,AOB的平分線(xiàn)交線(xiàn)段AC于點(diǎn)E,點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線(xiàn)的解析式;

(2)若動(dòng)點(diǎn)P在直線(xiàn)OE下方的拋物線(xiàn)上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線(xiàn)的對(duì)稱(chēng)軸l上的一點(diǎn),在拋物線(xiàn)上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明鍛煉健身,從A地勻速步行到B地用時(shí)25分鐘若返回時(shí),發(fā)現(xiàn)走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結(jié)果比去時(shí)少用25分鐘

1求返回時(shí)A、B兩地間的路程;

2若小明從A地步行到B地后,以跑步形式繼續(xù)前進(jìn)到C地整個(gè)鍛煉過(guò)程不休息).據(jù)測(cè)試,在他整個(gè)鍛煉過(guò)程的前30分鐘含第30分鐘,步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過(guò)30分鐘后,每多跑步1分鐘,多跑的總時(shí)間內(nèi)平均每分鐘消耗的熱量就增加1卡路里測(cè)試結(jié)果,在整個(gè)鍛煉過(guò)程中小明共消耗904卡路里熱量問(wèn)小明從A地到C地共鍛煉多少分鐘?

查看答案和解析>>

同步練習(xí)冊(cè)答案