已知P是⊙O外一點(diǎn),PA切⊙O于A,PB切⊙O于B.若PA=6,則PB=   
【答案】分析:根據(jù)切線長(zhǎng)定理知:PA=PB,由此可求出PB的長(zhǎng).
解答:解:∵PA、PB都是⊙O的切線,且A、B是切點(diǎn);
∴PA=PB,即PB=6.
點(diǎn)評(píng):此題考查的是切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、已知P是⊙O外一點(diǎn),PA切⊙O于A,PB切⊙O于B.若PA=6,則PB=
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南京)如圖,A、B是⊙O上的兩個(gè)定點(diǎn),P是⊙O上的動(dòng)點(diǎn)(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動(dòng)角.
(1)已知∠APB是⊙O上關(guān)于點(diǎn)A、B的滑動(dòng)角,
①若AB是⊙O的直徑,則∠APB=
90
90
°;
②若⊙O的半徑是1,AB=
2
,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點(diǎn),以O(shè)2為圓心作一個(gè)圓與⊙O1相交于A、B兩點(diǎn),∠APB是⊙O1上關(guān)于點(diǎn)A、B的滑動(dòng)角,直線PA、PB分別交⊙O2于M、N(點(diǎn)M與點(diǎn)A、點(diǎn)N與點(diǎn)B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•湖州)如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長(zhǎng);
(2)求證:PB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知P是⊙O外一點(diǎn),OP交⊙O于點(diǎn)A,PA=8,點(diǎn)P到⊙O的切線長(zhǎng)為12,則⊙O的半徑長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A是⊙O外一點(diǎn),B是⊙O上一點(diǎn),AO的延長(zhǎng)線交⊙O于C,連結(jié)BC.已知∠C=22.5°,∠BAC=45°,判斷AB是否為⊙O的切線并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案