【題目】如圖,在△ABC 中,AB=20cm,AC=12cm,點 P 從點 B 出發(fā)以每秒 3cm 的速度向點 A 運動,點 Q 從點 A 同時出發(fā)以每秒 2cm 的速度向點 C 運動,其中一個動點到達端點時,另一個動點也隨之停止運動,當△APQ 是以 PQ 為底的等腰三角形時,運動的時間是( )
A.2.5 秒
B.3 秒
C.3.5 秒
D.4 秒
【答案】D
【解析】設運動時間為t秒,
∵點 P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,
∴PB=3t,QA=2t,
又∵AB=20cm,AC=12cm,
∴PA=20-3t,QC=12-2t,
又∵△APQ 是以PQ為底的等腰三角形,
∴AP=AQ,
即20-3t=2t,
∴t=4,
所以答案是:D.
【考點精析】本題主要考查了解一元一次方程的步驟和等腰三角形的性質的相關知識點,需要掌握先去分母再括號,移項變號要記牢.同類各項去合并,系數化“1”還沒好.求得未知須檢驗,回代值等才算了;等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如表記錄了一名球員在罰球線上投籃的結果.那么,這名球員投籃一次,投中的概率約為(精確到0.1).
投籃次數(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項,得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號,得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數化為1,得x=﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果a=(-99)0 , b=(-0.1)-1 , c=(- )-2 , 那么a , b , c三數的大小為( 。
A.a>b>c
B.c>a>b
C.a>c>b
D.
c>b>a |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在ΔABC中點D為BC上一點,E為AC上一點,連接AD、BE、DE,已知BD=DE,AD=DC,∠ADB=∠CDE.
(1)如圖1,若∠ACB=40°時,求∠BAC的度數.
(2)如圖2,F是BE的中點,過點F作AD的垂線,分別交AD、AC于點G、H,求證:AH=CH.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com