【題目】已知在△ABC中,AC=3,BC=4,AB=5,點(diǎn)P在AB上(不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連結(jié)EF,M為EF的中點(diǎn),則CM的最小值為 .
【答案】1.2
【解析】解:如圖,連接CP. ∵AC=3,BC=4,AB=5
∴∠ACB=90°,
∵PE⊥AC,PF⊥BC,∠C=90°,
∴四邊形CFPE是矩形,
∴EF=CP,
由垂線段最短可得CP⊥AB時(shí),線段EF的值最小,則CM最小,
此時(shí),S△ABC= BCAC= ABCP,
即 ×4×3= ×5CP,
解得CP=2.4.
∴EF=2.4,
∵M(jìn)為EF中點(diǎn),
∴CM=1.2
故答案為:1.2.
連接CP,利用勾股定理逆定理可得∠ACB=90°,判斷出四邊形CFPE是矩形,根據(jù)矩形的對角線相等可得EF=CP,再根據(jù)垂線段最短可得CP⊥AB時(shí),線段EF的值最小,則CM最小,然后根據(jù)三角形的面積公式列出方程求解即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,0),B(2,0),C(3,5).
(1)求過點(diǎn)A,C的直線解析式和過點(diǎn)A,B,C的拋物線的解析式;
(2)求過點(diǎn)A,B及拋物線的頂點(diǎn)D的⊙P的圓心P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使AQ與⊙P相切,若存在請求出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題(2)利用乘法分配律及去括號法則先去括號,然后再合并同類項(xiàng)即可;
(1)計(jì)算
(2)化簡
(3)解方程
(4)先化簡,再求值 ,其中a=2,b=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列說法中是錯(cuò)誤的是( )
A.在△ABC中,若∠A:∠B:∠C=5:2:3,則△ABC為直角三角形
B.在△ABC中,∠C=∠A﹣∠B,則△ABC為直角三角形
C.在△ABC中,若a= c,b= c,則△ABC為直角三角形
D.在△ABC中,若a:b:c=2:2:4,則△ABC為直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】輪船航行到C處觀測小島A的方向是北偏西54°,那么從A同時(shí)觀測輪船在C處的方向是( 。
A. 南偏東54° B. 東偏北36° C. 東偏南54° D. 南偏東36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c滿足|a﹣ |+ +(c﹣4 )2=0.
(1)求a、b、c的值;
(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC邊BC上的高,BE平分∠ABC交AD于點(diǎn)E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com