【題目】如果一個多位自然數(shù)的任意兩個相鄰數(shù)位上,右邊數(shù)位上的數(shù)總比左邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“美數(shù)”,例如:123,3456,67,…都是“美數(shù)”.
(1)若某個三位“美數(shù)”恰好等于其個位的76倍,這個“美數(shù)”為 .
(2)證明:任意一個四位“美數(shù)”減去任意一個兩位“美數(shù)”之差再減去1得到的結果定能被11整除;
(3)如果一個多位自然數(shù)的任意兩個相鄰數(shù)位上,左邊數(shù)位上的數(shù)總比右邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“妙數(shù)”,若任意一個十位為為整數(shù))的兩位“妙數(shù)”和任意一個個位為為整數(shù))的兩位“美數(shù)”之和為55,則稱兩位數(shù)為“美妙數(shù)”,并把這個“美妙數(shù)”記為,則求的最大值.
【答案】(1)456 (2)見解析 (3)42
【解析】
(1)設這個“美數(shù)”的個位數(shù)為x,則根據(jù)題意可得方程,解方程求出x的值即可得出答案.
(2)設四位“美數(shù)”的個位為x、兩位“美數(shù)””的個位為y,分別表示出四位“美數(shù)”和兩位“美數(shù)”,再將四位“美數(shù)”減去任意一個兩位“美數(shù)””之差再加上1的結果除以11判斷結果是否為整數(shù)即可;
(3)根據(jù)題意兩個數(shù)之和為55得出二元一次方程,化簡方程,再根據(jù)x與y的取值范圍,即可求出最大值.
(1)設其個位數(shù)為x,則
解得:x=6
則這個“美數(shù)”為:
(2)設四位“美數(shù)”的個位為x、兩位“美數(shù)””的個位為y,
根據(jù)題意得:
=
=
即:式子結果是11的倍數(shù)
(3)根據(jù)題意:
,
由10x+y可得x越大越大,即y為最小值時的值最大
則x=4,y=2時的值最大
的最大值為
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個完全相同的直角三角形紙片△ABC、△DEF,如圖1放置,點B、D重合,點F在BC上,AB與EF交于點G.∠C=∠EFB=90°,∠E=∠ABC=30°,現(xiàn)將圖1中的△ABC繞點F按每秒10°的速度沿逆時針方向旋轉180°,在旋轉的過程中,△ABC恰有一邊與DE平行的時間為___________s
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB∥OC,A(0,﹣4),B(a,b),C(c,0),并且a,c滿足c=+10.一動點P從點A出發(fā),在線段AB上以每秒2個單位長度的速度向點B運動;動點Q從點O出發(fā)在線段OC上以每秒1個單位長度的速度向點C運動,點P,Q分別從點A,O同時出發(fā),當點P運動到點B時,點Q隨之停止運動,設運動時間為t(秒).
(1)求B,C兩點的坐標;
(2)當t為何值時,四邊形PQCB是平行四邊形?
(3)點D為線段OC的中點,當t為何值時,△OPD是等腰三角形?直接寫出t的所有值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應“雙十二購物狂歡節(jié)”活動,某零食店推出了甲、乙、丙三類餅干禮包,已知甲、乙、丙三類禮包均由、、三種餅干搭配而成,每袋禮包的成本均為、、三種餅干成本之和.每袋甲類禮包有5包種餅干、2包種餅干、8包種餅干;每袋丙類禮包有7包種餅干、1包種餅干、4包種餅干.已知甲每袋成本是該袋中種餅干成本的3倍,利潤率為,每袋乙的成本是其售價的,利潤是每袋甲利潤的;每袋丙禮包利潤率為.若該網(wǎng)店12月12日當天銷售甲、乙、丙三種禮包袋數(shù)之比為,則當天該網(wǎng)店銷售總利潤率為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)中x與y的部分對應值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②當x>1時,y的值隨x值的增大而減;
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
上述結論中正確的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,點M為BA延長線上一點,∠ABC的平分線BE和∠CAM的平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G,則下列結論:①∠APB=45°;②PF=PA;③DG=AP+GH;④BD﹣AH=AB.其中正確的是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過點o作射線OG、ON分別交AB,BC于點E,F(xiàn),且∠EOF=90°,BO、EF交于點P.則下列結論中:
⑴圖形中全等的三角形只有兩對;
⑵正方形ABCD的面積等于四邊形OEBF面積的4倍;
⑶BE+BF= OA;
⑷AE2+CF2=2OPOB.
正確的結論有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲船勻速順流而下從港到港,同時乙船勻速逆流而上從港到港,港處于、兩港的正中間,某個時刻,甲船接到通知需立即掉頭逆流而上到處,到處后迅速按原順流速度駛向港,最后甲、乙兩船都到達了各自的目的地.甲、乙兩船在靜水中的速度相同,設甲、乙兩船與港的距離之和為,行駛時間為,與的部分關系如圖,則當兩船在、間某處相超時,兩船距離港的距離為________千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“湘一四邊形”.
(1)已知:如圖1,四邊形是“湘一四邊形”,,,.則 , ,若,,則 (直接寫答案)
(2)已知:在“湘一四邊形”中,,,,.求對角線的長(請畫圖求解),
(3)如圖(2)所示,在四邊形中,若,當時,此時四邊形是否是“湘一四邊形”,若是,請說明理由:若不是,請進一步判斷它的形狀,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com