【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“湘一四邊形”.

1)已知:如圖1,四邊形是“湘一四邊形”,,.則 ,若,,則 (直接寫答案)

2)已知:在“湘一四邊形”中,,,,.求對(duì)角線的長(zhǎng)(請(qǐng)畫圖求解),

3)如圖(2)所示,在四邊形中,若,當(dāng)時(shí),此時(shí)四邊形是否是“湘一四邊形”,若是,請(qǐng)說(shuō)明理由:若不是,請(qǐng)進(jìn)一步判斷它的形狀,并給出證明.

【答案】185°,115°,3;(2AC的長(zhǎng)為;(3)四邊形ABCD不是湘一四邊形,四邊形ABCD是平行四邊形,理由見解析

【解析】

1)連接BD,根據(jù)湘一四邊形的定義求出∠B,∠C,利用等腰三角形的判定和性質(zhì)證明BC=DC即可.
2)分兩種情形:①如圖1-1,∠B=D=90°時(shí),延長(zhǎng)AD,BC交于點(diǎn)E.②如圖2-1中,∠A=C=60°時(shí),過(guò)D分別作DEABEDFBC于點(diǎn)F,分別求解即可解決問題.
3)結(jié)論:四邊形ABCD不是湘一四邊形,四邊形ABCD是平行四邊形.如圖2中,作CNADN,AMCBM.利用全等三角形的性質(zhì)證明AD=BC即可解決問題.

解:(1)如圖1中,連接BD

∵四邊形ABCD是湘一四邊形,∠A≠C,
∴∠B=D=85°
∵∠A=75°,
∴∠C=360°-75°-2×85°=115°,
AD=AB
∴∠ADB=ABD
∵∠ADC=ABC,
∴∠CDB=CBD
BC=CD=3,
故答案為85°,115°,3
2)①如圖1-1,∠B=D=90°時(shí),延長(zhǎng)AD,BC交于點(diǎn)E,

∵∠DAB=60°
∴∠E=30°,
又∵AB=4AD=3
BE=4,AE=8DE=5,
CE=
BC=BE-CE=4 ,
AC= ,
②如圖2-1中,∠A=C=60°時(shí),過(guò)D分別作DEABEDFBC于點(diǎn)F,

∵∠DAB=BCD=60°
又∵AB=4,AD=3
AE=,DE=BF= ,
BE=DF=,
CF=DFtan30°=×
BC=CF+BF= ,
AC=
綜合以上可得AC的長(zhǎng)為
3)結(jié)論:四邊形ABCD不是湘一四邊形,四邊形ABCD是平行四邊形.
理由:如圖2中,作CNADN,AMCBM

∵∠ADB=ABC,
∴∠CDN=ABM,
∵∠N=M=90°,CD=AB,
∴△CDN≌△ABMAAS),
CN=AM,DN=BM
AC=CA,CN=AM,
RtACNRtCAMHL),
AN=CM,∵DN=BM
AD=BC,∵CD=AB
∴四邊形ABCD是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)多位自然數(shù)的任意兩個(gè)相鄰數(shù)位上,右邊數(shù)位上的數(shù)總比左邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“美數(shù)”,例如:123,345667,…都是“美數(shù)”.

1)若某個(gè)三位“美數(shù)”恰好等于其個(gè)位的76倍,這個(gè)“美數(shù)”為   

2)證明:任意一個(gè)四位“美數(shù)”減去任意一個(gè)兩位“美數(shù)”之差再減去1得到的結(jié)果定能被11整除;

3)如果一個(gè)多位自然數(shù)的任意兩個(gè)相鄰數(shù)位上,左邊數(shù)位上的數(shù)總比右邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“妙數(shù)”,若任意一個(gè)十位為為整數(shù))的兩位“妙數(shù)”和任意一個(gè)個(gè)位為為整數(shù))的兩位“美數(shù)”之和為55,則稱兩位數(shù)為“美妙數(shù)”,并把這個(gè)“美妙數(shù)”記為,則求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)B在第一象限.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA.過(guò)點(diǎn)P作PD⊥OB于D點(diǎn)

(1)直接寫出BD的長(zhǎng)并求出點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示)
(2)在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,m)是第一象限內(nèi)一點(diǎn),連接OA,將OA繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AB,若反比例函數(shù)y= (x>0)的圖象恰好同時(shí)經(jīng)過(guò)點(diǎn)A、B,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC是腰長(zhǎng)為1的等腰直角三形,以RtABC的斜邊AC為直角邊,畫第二個(gè)等腰RtACD,再以RtACD的斜邊AD為直角邊,畫第三個(gè)等腰RtADE,依此類推,則第2018個(gè)等腰直角三角形的斜邊長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.

(1)求A、B、C三點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;
(2)若已知x軸上一點(diǎn)N( ,0),則在拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使得△CNQ是直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“江畔”禮品店在十一月份從廠家購(gòu)進(jìn)甲、乙兩種不同禮品.購(gòu)進(jìn)甲種禮品共花費(fèi)1500元,購(gòu)進(jìn)乙種禮品共花費(fèi)1050元,購(gòu)進(jìn)甲種禮品數(shù)量是購(gòu)進(jìn)乙種禮品數(shù)量的2倍,且購(gòu)進(jìn)一件乙種禮品比購(gòu)進(jìn)一件甲種禮品多花20元.

⑴求購(gòu)進(jìn)一件甲種禮品、一件乙種禮品各需多少元;

⑵元旦前夕,禮品店決定再次購(gòu)進(jìn)甲、乙兩種禮品共50個(gè).恰逢該廠家對(duì)兩種禮品的價(jià)格進(jìn)行調(diào)整,一件甲種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)提高了20%,一件乙種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)降低了5元.如果此次購(gòu)進(jìn)甲、乙兩種禮品的總費(fèi)用不超過(guò)3100元,那么這家禮品店最少可購(gòu)進(jìn)多少件甲種禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P411),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案