【題目】在等腰三角形ABC中,∠A、∠B、∠C的對(duì)邊分別為a、b、c,已知a=3,b和c是關(guān)于x的方程x2+mx+2-m=0的兩個(gè)實(shí)數(shù)根.

(1)ABC的周長(zhǎng).

(2)ABC的三邊均為整數(shù)時(shí)的外接圓半徑.

【答案】(1)△ABC的周長(zhǎng)為7或7;(2)△ABC的三邊均為整數(shù)時(shí)的外接圓半徑為

【解析】

(1)此題分兩種情況考慮:一是bc中有一個(gè)和a相等,是3;二是b=c,即根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根,由=0求解.最后注意看是否符合三角形的三邊關(guān)系.

(2)根據(jù)(1)中求解的結(jié)果,只需求得2,3,3的三角形的外接圓的半徑,根據(jù)等腰三角形的三線合一和勾股定理求解.

(1)b、c中有一邊等于3,

則方程可化為,

解得m=-

原方程可化為x2-=0,

解得x1=3,x2=,

所以三角形的周長(zhǎng)為3+3+=;

b=c,則=m2-4()=0,

解得m=﹣42,

當(dāng)m=﹣4時(shí),方程為x2﹣4x+4=0,得x1=x2=2,

所以三角形的周長(zhǎng)為2+2+3=7;

當(dāng)m=2時(shí),方程為x2+2x+1=0,得x1=x2=﹣1;(不合題意,舍去)

綜上可知ABC的周長(zhǎng)為77.

(2)ABC的外接圓⊙O,連接AO并延長(zhǎng)交⊙O于點(diǎn)D、交BCE,連接BO,

則有AEBC.

∵△ABC的三邊均為整數(shù),

AB=AC=2,BC=3,

BE=BC=.AE==,

設(shè)AO=R,在RtBOE中,R2=(2+(﹣R)2

R=,

∴△ABC的三邊均為整數(shù)時(shí)的外接圓半徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l 在平面直角坐標(biāo)系中,直線l與y軸交于點(diǎn)A,點(diǎn)B(-3,3)也在直線1上,將點(diǎn)B先向右平移1個(gè)單位長(zhǎng)度、再向下平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,點(diǎn)C恰好也在直線l上。

(1)求點(diǎn)C的坐標(biāo)和直線l的解析式

(2)若將點(diǎn)C先向左平移3個(gè)單位長(zhǎng)度,再向上平移6個(gè)單位長(zhǎng)度得到點(diǎn)D,請(qǐng)你判斷點(diǎn)D是否在直線l上;

(3)已知直線l:y=x+b經(jīng)過(guò)點(diǎn)B,與y軸交于點(diǎn)E,求△ABE的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),點(diǎn)P在以C(﹣2,0)為圓心,1為半徑的⊙C上,QAP的中點(diǎn),已知OQ長(zhǎng)的最大值為,則k的值為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱變換,若原來(lái)點(diǎn)A坐標(biāo)是,則經(jīng)過(guò)第2019次變換后所得的A點(diǎn)坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程(組)解應(yīng)用題:

為順利通過(guò)國(guó)家義務(wù)教育均衡發(fā)展驗(yàn)收,我市某中學(xué)配備了兩個(gè)多媒體教室,購(gòu)買了筆記本電腦和臺(tái)式電腦共120臺(tái),購(gòu)買筆記本電腦用了7.2萬(wàn)元,購(gòu)買臺(tái)式電腦用了24萬(wàn)元,已知筆記本電腦單價(jià)是臺(tái)式電腦單價(jià)的1.5倍,那么筆記本電腦和臺(tái)式電腦的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格中小正方形的邊長(zhǎng)為10,4).

(1) 在圖中標(biāo)出點(diǎn),使點(diǎn)到點(diǎn),,的距離都相等;

(2) 連接,,,此時(shí)___________三角形;

(3) 四邊形的面積是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路程之和是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

1

2

3)解不等式組,并寫出此不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)以每件280元的價(jià)格購(gòu)進(jìn)一批商品,當(dāng)每件商品售價(jià)為360元時(shí),每月可售出60件,為了擴(kuò)大銷售,商場(chǎng)決定采取適當(dāng)降價(jià)的方式促銷,經(jīng)調(diào)查發(fā)現(xiàn),如果每件商品降價(jià)1元,那么商場(chǎng)每月就可以多售出5件.

(1)設(shè)商場(chǎng)每件商品降價(jià)x元,利潤(rùn)為y元,寫出y與x的函數(shù)關(guān)系式。

(2)當(dāng)該商品的銷售價(jià)為多少元時(shí),所獲利潤(rùn)最大?最大利潤(rùn)是多少?

(3)要使商場(chǎng)每月銷售這種商品的利潤(rùn)達(dá)到7200元,且更有利于減少庫(kù)存,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案