(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,DA、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

(3) 拓展與應用:如圖(3),DEDA、E三點所在直線m上的兩動點(D、AE三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

 



證明:(1)∵BD⊥直線m,CE⊥直線m

∴∠BDA=∠CEA=90°

∵∠BAC=90°

∴∠BAD+CAE=90°

∵∠BAD+ABD=90°

∴∠CAE=ABD………………1分

AB=AC

∴△ADB≌△CEA………………2分

AE=BDAD=CE

DE=AE+AD= BD+CE ………………3分

(2)∵∠BDA =∠BAC=,

∴∠DBA+BAD=BAD +CAE=180°—

∴∠DBA=CAE………………4分

∵∠BDA=∠AEC=,AB=AC

∴△ADB≌△CEA………………5分

AE=BDAD=CE

DE=AE+AD=BD+CE………………6分

(3)由(2)知,△ADB≌△CEA

BD=AE,∠DBA =CAE

∵△ABF和△ACF均為等邊三角形

∴∠ABF=∠CAF=60°]

∴∠DBA+ABF=∠CAE+CAF

∴∠DBF=∠FAE………………8分

BF=AF

∴△DBF≌△EAF………………9分

DF=EF,∠BFD=∠AFE

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°

∴△DEF為等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


某校八年級(1)班50名學生參加2009年貴陽市數(shù)學質(zhì)量監(jiān)控考試,全班學生的成績統(tǒng)計如下表:

成績/分

71

74

78

80

82

83

85

86

88

90

91

92

94

人數(shù)/人

1

2

3

5

4

5

3

7

8

4

3

3

2

請根據(jù)表中提供的信息解答下列問題:

(1)該班學生考試成績的眾數(shù)是______;

(2)該班學生考試成績的中位數(shù)是______;

(3)該班張華同學在這次考試中的成績是83分,能不能說張華同學的成績處于全班中游偏上水平?試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某組學生進行“引體向上”測試,有2名學生做了8次,其余4名學生分別做了10次、7次、6次、9次,那么這組學生的平均成績?yōu)開_____次,在平均成績之上的有______人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,△ABC在平面直角坐標系內(nèi),回答下列問題.

(1)請直接寫出點A、C的坐標;

(2)把△ABC先向右平移4個單位,再向下平移3個單位,寫出平移后點B的對應點的坐標;

(3)求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


對一張矩形紙片ABCD進行折疊,具體操作如下:
第一步:先對折,使ADBC重合,得到折痕MN,展開;
第二步:再一次折疊,使點A落在MN上的點處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段,,展開,如圖1;


第三步:再沿所在的直線折疊,點B落在AD上的點處,得到折痕EF,同時得到線段,展開,如圖2

求∠ABE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


先化簡,再求值:a(2-a)-(a+1)(a-1)+(a-1)2,其中a=。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在萬三中的“創(chuàng)造節(jié)”上,數(shù)學興趣小組長小明想要

知道旗桿的直徑。苦于身邊沒有直尺和測量工具,只有一根已知

長為30厘米的細線,他用這個細線剛好將旗桿纏了三圈,每纏

一圈,細線上升6厘米,請你幫助小明算出旗桿的直徑是      ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列運算中正確的是(      )

A、a2·a3=a6          B、(a2)3=a5       C、a6÷a2=a3         D、(a2·b)2=a4b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,一個等邊三角形紙片,剪去一個角后得到一個四邊形,則圖中∠α+∠β的度數(shù)是(     )

A.180°  B.220°  C.240°  D.300°

查看答案和解析>>

同步練習冊答案