【題目】已知一次函數y=x+6和反比例函數y=(k≠0).
(1)k滿足什么條件時,這兩個函數在同一坐標系中的圖象有兩個公共點?
(2)設(1)中的公共點為A和B,則∠AOB是銳角還是鈍角?
【答案】(1) k>-9(k≠0) ;(2)見解析.
【解析】
(1)當比例系數符號相同或組成方程組整理后的一元二次方程的判別式大于0時,兩個函數在同一坐標系xOy中的圖象有兩個公共點;
(2)結合(1)中k的取值范圍,分情況探討∠AOB是銳角還是鈍角.
(1)分兩種情況:
①當比例系數符號相同,即k<0時,這兩個函數在同一坐標系xOy中的圖象有兩個公共點;
②解方程組,
整理得:x2-6x+k=0,
∵它們有兩個公共點,
∴36-4k>0,
解得k<9,在第一,三象限,
∴0<k<9.
故當0<k<9或k<0時,這兩個函數在同一坐標系xOy中的圖象有兩個公共點;
(2)①當k<0時,如圖1,點A、點B分別在第二、四象限,連接OA、OB,可知∠AOB>∠xoy=90°,故∠AOB為鈍角;
②當0<k<9時,如圖2,點A、點B都在第一象限,連接OA、OB,可知∠AOB<∠xOy=90°,故∠AOB為銳角.
科目:初中數學 來源: 題型:
【題目】食品加工是一種專業(yè)技術,就是把原料經過人為處理形成一種新形式的可直接食用的產品,這個過程就是食品加工.比如用小麥經過碾磨、篩選、加料攪拌、成型烘干,成為餅干,就是屬于食品加工的過程.下表給出了甲、乙、丙三種原料中的維生素A、B的含量(單位:g/kg).
原料甲 | 原料乙 | 原料丙 | |
維生素A的含量 | 4 | 6 | 4 |
維生素B的含量 | 8 | 2 | 4 |
將甲、乙、丙三種原料共100kg混合制成一種新食品,其中原料甲xkg,原料乙ykg.
(1)這種新食品中,原料丙的含量__________kg,維生素B的含量__________g;(用含、的式子表示)
(2)若這種新食品中,維生素A的含量至少為440g,維生素B的含量至少為480g,請你證明:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A=60°,∠B=30,∠D=45°.
(1)若∠BCD=45°,求∠ACE的度數.
(2)若∠ACE=150°,求∠BCD的度數.
(3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數量關系并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格圖中建立一直角坐標系,一條圓弧經過網格點A、B、C,請在網格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數;
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1
(1)在圖中畫出△A1B1C1;
(2)點A1,B1,C1的坐標分別為 、 、 ;
(3)若直線BC上有一點P,使△PAC的面積是△ABC面積的2倍,直接寫出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O為坐標原點,點A(3a,2a)在第一象限,過點A向x軸作垂線,垂足為點B,連接OA,S△AOB=12,點M從O出發(fā),沿y軸的正半軸以每秒2個單位長度的速度運動,點N從點B出發(fā)以每秒3個單位長度的速度向x軸負方向運動,點M與點N同時出發(fā),設點M的運動時間為t秒,連接AM,AN,MN.
(1)求a的值;
(2)當0<t<2時,
①請?zhí)骄俊?/span>ANM,∠OMN,∠BAN之間的數量關系,并說明理由;
②試判斷四邊形AMON的面積是否變化?若不變化,請求出其值;若變化,請說明理由。
(3)當OM=ON時,請求出t的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一段6000米的道路由甲、乙兩個工程隊負責完成,已知甲工程隊每天完成的工作量是乙工程隊每天完成工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用10天.
(1)求甲、乙兩工程隊每天各完成多少米?
(2)如果甲工程隊每天需工程費700元,乙工程隊每天需工程費500元,甲工程隊單獨施工4天后由甲乙兩個工程隊共同完成余下的工程,則完成此項工程共需要多少費用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為 a 的正方形 ABCD 中, M 是邊 AD 上一動點(點 M 與點 A 、 D 不重合), N 是 CD 的中點,且CBMNMB ,則 tan ABM (___________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ACB中,∠ACB=90°,AC=BC,D為AB上一點,連結CD,將CD繞C點逆時針旋轉90°至CE,連結DE,過C作CF⊥DE交AB于F,連結BE.
(1)求證:AD=BE;
(2)求證:AD2+BF2=DF2;
(3)若∠ACD=15°,CD=+1,求BF.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com