【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階,下圖是其中的甲、乙兩段臺(tái)階的示意圖(圖中的數(shù)字表示每一級(jí)臺(tái)階的高度,單位cm).已知數(shù)據(jù)15、16、16、14、14、15的方差S甲2=,數(shù)據(jù)11、15、18、17、10、19的方差S乙2=.
請(qǐng)你用學(xué)過的統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)通過計(jì)算,回答下列問題:
(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?
(2)哪段臺(tái)階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
【答案】(1)相同點(diǎn):兩段臺(tái)階路臺(tái)階高度的平均數(shù)相同;不同點(diǎn):兩段臺(tái)階路臺(tái)階高度的中位數(shù)、方差和極差均不相同;(2)甲段路走起來更舒服一些;(3)每個(gè)臺(tái)階高度均為15cm(原平均數(shù))使得方差為0.
【解析】
(1)分別求出 甲、乙兩段臺(tái)階路的高度平均數(shù)、中位數(shù)、極差即可比較;
(2)根據(jù)方差的性質(zhì)解答;
(3)根據(jù)方差的性質(zhì)提出合理的整修建議.
(1)(1)甲段臺(tái)階路的高度平均數(shù)=×(15+16+16+14+14+15)=15,
乙段臺(tái)階路的高度平均數(shù)=×(11+15+18+17+10+19)=15;
甲段臺(tái)階路的高度中位數(shù)是15,乙段臺(tái)階路的高度中位數(shù)是=16;
甲段臺(tái)階路的極差是16-14=2,乙段臺(tái)階路的極差是19-11=8,
∴相同點(diǎn):兩段臺(tái)階路臺(tái)階高度的平均數(shù)相同.
不同點(diǎn):兩段臺(tái)階路臺(tái)階高度的中位數(shù)、方差和極差均不相同.
(2)甲段路走起來更舒服一些,因?yàn)樗呐_(tái)階高度的方差。
(3)整修建議:每個(gè)臺(tái)階高度均為15cm(原平均數(shù))使得方差為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點(diǎn)F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 .
問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點(diǎn)E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足為E,DE與BC交于點(diǎn)F.求證:DF=2CE.
要求:請(qǐng)你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點(diǎn)D,過點(diǎn)D的切線分別交AB、AC的延長線與點(diǎn)E、F.
(1)求證:AF⊥EF.
(2)小強(qiáng)同學(xué)通過探究發(fā)現(xiàn):AF+CF=AB,請(qǐng)你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在講完乘法公式的多種運(yùn)用后,要求同學(xué)們運(yùn)用所學(xué)知識(shí)解答:求代數(shù)式的最小值?同學(xué)們經(jīng)過交流、討論,最后總結(jié)出如下解答方法:
解:
∵,
當(dāng)時(shí),的值最小,最小值是0,
∴
當(dāng)時(shí),的值最小,最小值是1,
∴的最小值是1.
請(qǐng)你根據(jù)上述方法,解答下列各題
(1)當(dāng)x=______時(shí),代數(shù)式的最小值是______;
(2)若,當(dāng)x=______時(shí),y有最______值(填“大”或“小”),這個(gè)值是______;
(3)若,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某段限速公路BC上(公路視為直線),交通管理部門規(guī)定汽車的最高行駛速度不能超過60 km/h(即),并在離該公路100 m處設(shè)置了一個(gè)監(jiān)測點(diǎn)A.在如圖的平面直角坐標(biāo)系中,點(diǎn)A位于y軸上,測速路段BC在x軸上,點(diǎn)B在點(diǎn)A的北偏西60°方向上,點(diǎn)C在點(diǎn)A的北偏東45°方向上.另外一條公路在y軸上,AO為其中的一段.
(1)求點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)一輛汽車從點(diǎn)B勻速行駛到點(diǎn)C所用的時(shí)間是15 s,通過計(jì)算,判斷該汽車在這段限速路上是否超速.(參考數(shù)據(jù): ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(-2,-1),(1,1)兩點(diǎn),則下列關(guān)于此二次函數(shù)的說法正確的是【 】
A.y的最大值小于0 B.當(dāng)x=0時(shí),y的值大于1
C.當(dāng)x=-1時(shí),y的值大于1 D.當(dāng)x=-3時(shí),y的值小于0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°.若固定△ABC,將△DEC繞點(diǎn)C旋轉(zhuǎn).
(1)當(dāng)△DEC統(tǒng)點(diǎn)C旋轉(zhuǎn)到點(diǎn)D恰好落在AB邊上時(shí),如圖2.
①當(dāng)∠B=∠E=30°時(shí),此時(shí)旋轉(zhuǎn)角的大小為 ;
②當(dāng)∠B=∠E=α時(shí),此時(shí)旋轉(zhuǎn)角的大小為 (用含a的式子表示).
(2)當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小楊同學(xué)猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請(qǐng)你證明小楊同學(xué)的猜想.若不正確,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)數(shù)分別為a、b、c、d、e.
(1)若a+e=0,則代數(shù)式b+c+d= ;
(2)若a是最小的正整數(shù),先化簡,再求值:;
(3)若a+b+c+d=2,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧BD的中點(diǎn),CE⊥AB于點(diǎn)F.
(1)求證:BF=CF;
(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com