(2012•山西)如圖,已知菱形ABCD的對(duì)角線AC、BD的長分別為6cm、8cm,AE⊥BC于點(diǎn)E,則AE的長是(  )
分析:根據(jù)菱形的性質(zhì)得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對(duì)角線乘積的一半,也等于BC×AE,可得出AE的長度.
解答:解:∵四邊形ABCD是菱形,
∴CO=
1
2
AC=3cm,BO=
1
2
BD=4cm,AO⊥BO,
∴BC=
AO2+BO2
=5cm,
∴S菱形ABCD=
BD•AC
2
=
1
2
×6×8=24cm2,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE=
24
5
cm,
故選D.
點(diǎn)評(píng):此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對(duì)角線互相垂直且平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,直線AB∥CD,AF交CD于點(diǎn)E,∠CEF=140°,則∠A等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,AB是⊙O的直徑,C、D是⊙O上一點(diǎn),∠CDB=20°,過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)E,則∠E等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖,在平面直角坐標(biāo)系中,矩形OABC的對(duì)角線AC平行于x軸,邊OA與x軸正半軸的夾角為30°,OC=2,則點(diǎn)B的坐標(biāo)是
(2,2
3
(2,2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖所示的工件的主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•山西)如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD∥OB,則圖中休閑區(qū)(陰影部分)的面積是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案