【題目】如圖,畫∠AOB=90°,并畫∠AOB的平分線OC.
(1)將三角尺的直角頂點落在OC的任意一點P上,使三角尺的兩條直角邊與∠AOB的兩邊分別垂直,垂足為E、F(如圖1).則PE_____PF(填“>”、“<”、“=”)
(2)把三角尺繞著點P旋轉(如圖2),PE與PF相等嗎?試猜想PE、PF的大小關系,并說明理由.
(3)在(2)的條件下,過點P作直線GH⊥OC,分別交OA、OB于點G、H,如圖3 .
①圖中全等三角形有___________對(不添加輔助線)
②猜想GE2、FH2、EF2之間的關系,并證明你的猜想.
【答案】(1)=;(2)3;(3)GE2+FH2=EF2.
【解析】
(1)根據角平分線的性質定理證明;
(2)證明△MPE≌△NPF,根據全等三角形的性質證明結論;
(3)①根據等腰直角三角形的性質得到OP=PG=PH,證明△GPE≌△OPF(ASA),△EPO≌△FPH,△GPO≌△OPH,得到答案; ②根據勾股定理,全等三角形的性質解答.
解:(1)∵OC平分∠AOB,PE⊥OA,PF⊥OB,
∴PE=PF,
故答案為:=;
(2)PE=PF,
理由如下:∵∠MPN=90°,∠EPF=90°,
∴∠MPE=∠NPF,
由(1)得,PM=PN,
在△MPE和△NPF中,
∠MPE=∠NPF, PM=PN, ∠PME=∠PNF ,
∴△MPE≌△NPF(ASA),
∴PE=PF;
(3)①∵OC平分∠AOB,
∴∠AOC=∠BOC=45°,
∵GH⊥OC,
∴∠OGH=∠OHG=45°,
∴OP=PG=PH,
∵∠GPO=90°,∠EPF=90°,
∴∠GPE=∠OPF,
在△GPE和△OPF中,
∠PGE=∠POF, PG=PO, ∠GPE=∠OPF,
∴△GPE≌△OPF(ASA),
同理,△EPO≌△FPH,△GPO≌△OPH,
故答案為:3;
②GE2+FH2=EF2,
理由如下:
∵△GPE≌△OPF,
∴GE=OF,
∵△EPO≌△FPH,
∴FH=OE,
在Rt△EOF中,OF2+OE2=EF2,
∴GE2+FH2=EF2.
科目:初中數(shù)學 來源: 題型:
【題目】在濟南市開展的“美麗泉城,創(chuàng)衛(wèi)我同行”活動中,某校倡議七年級學生利用雙休日在各自社區(qū)參加義務勞動.為了解同學們勞動情況,學校隨機調查了部分同學的勞動時間,并用得到的數(shù)據繪制成不完整的統(tǒng)計圖表,如圖所示:
勞動時間(時) | 頻數(shù)(人數(shù)) | 頻率 |
0.5 | 12 | 0.12 |
1 | 30 | 0.3 |
1.5 | x | 0.4 |
2 | 18 | y |
合計 | m | 1 |
(1)統(tǒng)計表中的x= ,y= ;
(2)被調查同學勞動時間的中位數(shù)是 時;
(3)請將頻數(shù)分布直方圖補充完整;
(4)求所有被調查同學的平均勞動時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CE為三角形的角平分線,AD⊥CE于點F交BC于點D
(1) 若∠BAC=96°,∠B=28°,直接寫出∠BAD=__________°
(2) 若∠ACB=2∠B
① 求證:AB=2CF
② 若EF=2,CF=5,直接寫出=__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,給出了格點△ABC和△DEF(頂點為網格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時,他了解到這個公司除收取每次6元的包裝費外,櫻桃不超過1kg收費22元,超過1kg,則超出部分按每千克10元加收費用.設該公司從西安到南昌快遞櫻桃的費用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請你求出這次快寄的費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(-1,0),點B在直線上運動,當線段AB最短時,點B的坐標為( )
A. (0,0) B. (,) C. (,) D. (,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,△ABC中,∠A=90°,AB=AC,D是BC邊上的中點,E、F分別是AB、AC上的點,且∠EDF=90°,求證:BE=AF.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com