【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若ADBCBC3,AD2,EFEH

(1)求證:△AEH∽△ABC;

(2)求矩形EFGH的面積.

【答案】(1)見(jiàn)解析;(2)矩形EFGH的面積為.

【解析】

(1)由EH∥FG可得∠AEH=∠ABC,∠AHE=∠ACB,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似即可判定△AEH∽△ABC;(2)根據(jù)相似三角形的性質(zhì)求得EH的長(zhǎng),再求得EF的長(zhǎng),利用矩形的面積公式即可求得矩形EFGH的面積.

(1)證明:∵四邊形EFGH是矩形

∴EH∥FG,EF⊥FG

∵EH∥FG

∴∠AEH=∠ABC,∠AHE=∠ACB

∴△AEH∽△ABC

(2)∵EF⊥FG,AD⊥BC

∴AD∥EF

∵EH∥BC

,且BC=3,AD=2,EF=EH.

∴EH=

即EF=1

∴矩形EFGH的面積=EF×EH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對(duì)角線ACBD交于點(diǎn)O,AOBO,DE平分∠ADCBC于點(diǎn)E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過(guò)測(cè)試:同時(shí)開(kāi)放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開(kāi)放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。

(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?

(2)若7個(gè)餐廳同時(shí)開(kāi)放,能否供全校的5300名學(xué)生就餐?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)體商戶購(gòu)進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場(chǎng)調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣出160個(gè).若銷售單價(jià)每個(gè)降低2元,則每周可多賣出個(gè).設(shè)銷售價(jià)格每個(gè)降低元,每周銷售量為y個(gè).

(1)求出銷售量個(gè)與降價(jià)元之間的函數(shù)關(guān)系式;

(2)設(shè)商戶每周獲得的利潤(rùn)為W元,當(dāng)銷售單價(jià)定為多少元時(shí),每周銷售利潤(rùn)最大,最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=+mx+3x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),

1)求m的值及拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)P是拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,AB=8,點(diǎn)P在邊CD上,tanPBC=,點(diǎn)Q是在射線BP上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)QAB的平行線交射線AD于點(diǎn)M,點(diǎn)R在射線AD上,使RQ始終與直線BP垂直.

1)如圖1,當(dāng)點(diǎn)R與點(diǎn)D重合時(shí),求PQ的長(zhǎng);

2)如圖2,試探索: 的比值是否隨點(diǎn)Q的運(yùn)動(dòng)而發(fā)生變化?若有變化,請(qǐng)說(shuō)明你的理由;若沒(méi)有變化,請(qǐng)求出它的比值;

3)如圖3,若點(diǎn)Q在線段BP上,設(shè)PQ=xRM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2C分別交ACBC于點(diǎn)D、E,得到DE。

(1)求證:ABC的切線.

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是一塊邊長(zhǎng)為4米的正方形苗圃,園林部門(mén)將其改造為矩形的形狀,其中點(diǎn)邊上,點(diǎn)的延長(zhǎng)線上, 設(shè)的長(zhǎng)為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫(xiě)自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請(qǐng)問(wèn)此時(shí)的長(zhǎng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在航線l的兩側(cè)分別有觀測(cè)點(diǎn)A和B,點(diǎn)B到航線l的距離BD為4km,點(diǎn)A位于點(diǎn)B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點(diǎn)A南偏東74°方向的C處,沿該航線自東向西航行至觀測(cè)點(diǎn)A的正南方向E處.求這艘輪船的航行路程CE的長(zhǎng)度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)

查看答案和解析>>

同步練習(xí)冊(cè)答案