【題目】老王有一批貨物要從A地運往B地準(zhǔn)備租用某汽車運輸公司的甲、乙兩種貨車若干輛,經(jīng)了解,這兩種貨車兩次運載貨物的情況如下表所示:(每次都是滿載)
第一次 | 第二次 | |
甲 | 2輛 | 5輛 |
乙 | 3輛 | 6輛 |
累計貨運量 | 15.5t | 35t |
(1)甲、乙兩種貨車每輛各可運貨物多少噸?
(2)現(xiàn)老王租用該公司甲貨車3輛,乙貨車5輛,剛好將這批貨物運完(滿載)若每噸貨的運費為30元,則老王應(yīng)付運費多少元?
【答案】(1)每輛甲貨車可運貨4t,每輛乙貨車可運貨2.5t;(2)老王應(yīng)付運費735元.
【解析】
(1)設(shè)每輛甲貨車可運貨xt,每輛乙貨車可運貨yt,根據(jù)這兩種貨車兩次運載貨物的情況統(tǒng)計表,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)根據(jù)總運費=每噸運費×這批貨物的總重量,即可得出結(jié)論.
解:(1)設(shè)每輛甲貨車可運貨xt,每輛乙貨車可運貨yt,
依題意,得:,
解得:.
答:每輛甲貨車可運貨4t,每輛乙貨車可運貨2.5t.
(2)30×(3×4+5×2.5)=735(元).
答:老王應(yīng)付運費735元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交△ABC的外接圓⊙O于點D,連接BD,過點D作直線DM,使∠BDM=∠DAC. (Ⅰ)求證:直線DM是⊙O的切線;
(Ⅱ)求證:DE2=DFDA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N。
(1)求證:MN=AM+BN;
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足.D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為,.
(1)則A點的坐標(biāo)為 ;點C的坐標(biāo)為 .D點的坐標(biāo)為 .
(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.
(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標(biāo)系中,標(biāo)出A、B、C三點;
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標(biāo)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com