【題目】甲、乙兩人參加從地到地的長跑比賽,兩人在比賽時(shí)所跑的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象,回答下列題:
(1)________(填“甲”或“乙”)先到達(dá)終點(diǎn);甲的速度是________米/分鐘;
(2)求甲與乙相遇時(shí),他們離地多少米?
【答案】(1)乙,250;(2)3000米
【解析】
(1)根據(jù)函數(shù)圖象得到甲乙到達(dá)的時(shí)間即可得到先到達(dá)的人,利用路程除以時(shí)間得到速度;
(2)求出甲跑的函數(shù)解析式,乙跑的函數(shù)解析式(),即可求出交點(diǎn)坐標(biāo)得到答案.
(1)根據(jù)函數(shù)圖象可知:甲跑完全程需要20分鐘,乙跑完全程需要16分鐘,
∴乙先到達(dá)終點(diǎn),
甲的速度=(米/分鐘),
故答案為:乙,250;
(2)設(shè)甲跑的路程與時(shí)間的函數(shù)解析式為y=kx,
∴y=,
設(shè)甲乙相遇后,乙跑的路程與時(shí)間的函數(shù)解析式為y=ax+b(),
,得,
∴y=500x-3000,
由,得,
∴甲與乙相遇時(shí),他們離地3000米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個(gè)含30°角的△EDF的30°角的頂點(diǎn)D放在AB邊上,E、F分別在AC、BC上,當(dāng)點(diǎn)D在AB邊上移動(dòng)時(shí),DE始終與AB垂直,若△CEF與△DEF相似,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠BAC=20°.動(dòng)點(diǎn)P、Q分別在直線BC上運(yùn)動(dòng),且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示AB為⊙O的一條弦,點(diǎn)C為劣弧AB的中點(diǎn),E為優(yōu)弧AB上一點(diǎn),點(diǎn)F在AE的延長線上,且BE=EF,線段CE交弦AB于點(diǎn)D.
(1)求證:CE∥BF;
(2)若BD=2,且EA:EB:EC=3:1:,求△BCD的面積(注:根據(jù)圓的對稱性可知OC⊥AB).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲進(jìn)行了10次射苦練,平均成績?yōu)?/span>9環(huán),且前9次的成績(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.
(1)求甲第10次的射擊成績:
(2:求甲這10次射擊成績的方差:
(3)乙在相同情況下也進(jìn)行了10次射擊訓(xùn)練,平均成績?yōu)?/span>9環(huán),方差為1.6環(huán),請問從甲和乙兩個(gè)人中選一個(gè)去參加比賽,你認(rèn)為哪個(gè)去更合適?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,四邊形為正方形,點(diǎn)分別在與上,且,求證:.
(2)如圖②,在四邊形中,,點(diǎn)分別在與上,且.猜想與之間的數(shù)量關(guān)系,并證明你的猜想;
(3)如圖③,在四邊形中,與互補(bǔ),點(diǎn)分別在與上,且,請直接寫出,與之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( 。
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com