【題目】如圖,AB∥CD,直線EF分別與AB,CD交于點(diǎn)G,H,GM⊥EF,HN⊥EF,交AB于點(diǎn)N,∠1=50°.
(1)求∠2的度數(shù);
(2)試說明HN∥GM;
(3)∠HNG=°.
【答案】
(1)解:∵AB∥CD,
∴∠EHD=∠1=50°,
∴∠2=∠EHD=50°
(2)解:∵GM⊥EF,HN⊥EF,
∴∠MGH=90°,∠NHF=90°,
∴∠MGH=∠NHF,
∴HN∥GM
(3)40
【解析】解:(3)∵HN⊥EF,
∴∠NHG=90°
∵∠NGH=∠1=50°,
∴∠HNG=90°﹣50°=40°.
所以答案是40.
【考點(diǎn)精析】通過靈活運(yùn)用平行線的判定與性質(zhì),掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,化簡:|a|﹣|a+b|﹣ +|b﹣c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式中正確的是( )
A. ﹣(a﹣b)=b﹣a B. ﹣(a+b)=﹣a+b
C. 2(a+1)=2a+1 D. ﹣(3﹣x)=3+x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.
求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺(tái),設(shè)購進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2+8x+7=0,則配方正確的是( )
A.(x﹣4)2=9
B.(x+4)2=9
C.(x﹣8)2=16
D.(x+8)2=57
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF= BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為完成下列任務(wù),你認(rèn)為采用什么調(diào)查方式最合適?
(1)了解某市居民的年人均收入;
(2)了解某班學(xué)生期末考試的數(shù)學(xué)成績;
(3)了解一個(gè)月內(nèi)某城市一條道路的車流量;
(4)了解某電視臺(tái)一個(gè)娛樂節(jié)目的收視率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.
(1)若拋物線經(jīng)過點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問:當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com