【題目】如圖,一枚棋子放在七角棋盤的第0號角,現(xiàn)依逆時針方向移動這枚棋子,其各步依次移動1,2,3,…,n個角,如第一步從0號角移動到第1號角,第二步從第1號角移動到第3號角,第三步從第3號角移動到第6號角,….若這枚棋子不停地移動下去,則這枚棋子永遠不能到達的角的個數(shù)是( )

A.0 B.1 C.2 D.3

【答案】D

【解析】

試題因棋子移動了k次后走過的總格數(shù)是1+2+3+…+k=k(k+1),然后根據(jù)題目中所給的第k次依次移動k個頂點的規(guī)則,可得到不等式最后求得解.

因棋子移動了k次后走過的總格數(shù)是1+2+3+…+k=k(k+1),應停在第k(k+1)-7p格,

這時P是整數(shù),且使0≤k(k+1)-7p≤6,分別取k=1,2,3,4,5,6,7時,

k(k+1)-7p=1,3,6,3,1,0,0,發(fā)現(xiàn)第2,4,5格沒有停棋,

若7<k≤10,設k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),

由此可知,停棋的情形與k=t時相同,

故第2,4,5格沒有停棋,

即這枚棋子永遠不能到達的角的個數(shù)是3.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,、分別垂直平分,交、兩點,相交于點.

(1)的周長為15 cm,求的長.

(2),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為格點多邊形

1)在圖1中確定格點D,并畫出一個以AB、CD為頂點的四邊形,使其為軸對稱圖形(一種情況即可);

2)直接寫出圖2FGH的面積是   ;

3)在圖3中畫一個格點正方形,使其面積等于17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有8×8的正方形網(wǎng)格,每個小正方形邊長為1,按要求操作并計算。

1)在8×8的正方形網(wǎng)格中建立平面直角坐標系,使點的坐標為,點的坐標為;

2)將點向下平移5個單位,再關于軸對稱得到點,則點坐標為(________________);

3)畫出三角形,并求其面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系中

1作出ABC關于軸對稱的并寫出三個頂點的坐標 ( 。,(  ),( 。;

2直接寫出ABC的面積為

3軸上畫點P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k0)的圖象與反比例函雙y=(m0)的陽象交于點c(n,3),與x軸、y軸分別交于點A、B,過點CCMx軸,垂足為M,若tanCAM=,OA=2.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)點D是反比例函數(shù)圖象在第三象限部分上的一點,且到x軸的距離是3,連接AD、BD,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y=的圖象在第一象限上的動點,連結AO并延長交另一分支于點B,以AB為邊作等邊△ABC使點C落在第二象限,且邊BCx軸于點D,若△ACD與△ABD的面積之比為1:2,則點C的坐標為( 。

A. (﹣3,2 B. (﹣5, C. (﹣6, D. (﹣3,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案