觀察計(jì)算
當(dāng),時(shí), 與的大小關(guān)系是_________________.
當(dāng),時(shí), 與的大小關(guān)系是_________________.
探究證明
如圖所示,為圓O的內(nèi)接三角形,為直徑,過C作于D,設(shè),BD=b.
(1)分別用表示線段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論
根據(jù)上面的觀察計(jì)算、探究證明,你能得出與的大小關(guān)系是:______________.
實(shí)踐應(yīng)用
要制作面積為4平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直徑為10的⊙A經(jīng)過點(diǎn)C(0,5)和點(diǎn)O(0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點(diǎn),則cos∠OBC的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-2,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的解析式;
(3)在(2)中拋物線的對(duì)稱軸上是否存在點(diǎn)C,使△BOC的周長最小?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.
(4)如果點(diǎn)P是(2)中的拋物線上的動(dòng)點(diǎn),且在x軸的下方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,在平面直角坐標(biāo)系中,平行四邊形在第一象限,直線從原點(diǎn)出發(fā)沿軸正方向平移,被平行四邊形截得的線段的長度與平移的距離的函數(shù)圖象如圖②所示,那么平行四邊形的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個(gè)頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90º后得到△A1OB1.
(1)在網(wǎng)格中畫出△A1OB1,并標(biāo)上字母;
(2)點(diǎn)A關(guān)于O點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)為 ;
(3)點(diǎn)A1的坐標(biāo)為 ;
(4)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑為弧BB1,那么弧BB1的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
明明同學(xué)在“百度”搜索引擎輸入“馬航飛機(jī)失蹤”,能搜索到與之相關(guān)的結(jié)果個(gè)數(shù)約為32300000,這個(gè)數(shù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC在平面坐標(biāo)系中,∠BAC=90°,AB=AC,A(1,0),B(0,2),拋物線的圖象過C點(diǎn).
(1)求出點(diǎn)C的坐標(biāo)及拋物線的解析式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo),若不存在,說明理由.
(3)平移該拋物線的對(duì)稱軸所在直線l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com