直線y=kx+b(k<0)上有三個點,A(4,y1),B(-2,y2),C(1,y3),則y1、y2、y3的大小關(guān)系是(  )
分析:先根據(jù)函數(shù)解析式判斷出一次函數(shù)的增減性,再根據(jù)各點橫坐標(biāo)的特點即可得出結(jié)論.
解答:解:∵直線y=kx+b中k<0,
∴y隨x的增大而減小,
∵4>1>-2,
∴y1<y3<y2
故選B.
點評:本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點,熟知一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0時,y隨x的增大而減小是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖示直線y=kx+b與反比例函數(shù)y=
6
x
(x>0)相交于A(1,m)和B(n,2)兩點.
(1)求一次函數(shù)y=kx+b的函數(shù)解析式;
(2)將一次函數(shù)y=kx+b的圖象沿x軸負(fù)方向平移2個單位后,試問新圖象與反比例函數(shù)y=
6
x
的圖象是否有交點,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)直線y=kx(k<0)與雙曲線y=-
5x
相交于A(x1,y1),B(x2,y2)兩點,
則5x1y2-3x2y1的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與直線y=mx(m≠0)交于點A(-2,4).
(1)求直線y=mx(m≠0)的解析式;
(2)若直線y=kx+b(k≠0)與另一條直線y=2x交于點B,且點B的橫坐標(biāo)為-4,求△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,原點到直線y=kx+b的距離公式為d=
|b|
k2+1
,根據(jù)這個公式解答下列問題:
(1)原點到直線y=-
4
3
x+4的距離為
 

(2)若原點到y(tǒng)=(1-k)x+2k的距離為該直線與y軸交點到原點距離的一半,則k=
 

(3)若(1)中的直線與y軸、x軸交于A、B兩點,直線AC與x軸交于C點,若∠ABC的鄰補角是∠ACB的鄰補角的2倍,求原點到直線AC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=kx+4分別于x軸、y軸相交于點A、B,O是坐標(biāo)原點,A點的坐標(biāo)為(4,0),P是OB上(O、B兩點除外)的一點,過P作PC⊥y軸交直線AB于C,過點C作CD⊥x軸,垂足為D,設(shè)線段PC的長為l,點P的坐標(biāo)為(0,m)
(1)求k的值;
(2)如果點P在線段OB(O、B兩點除外)上移動,求l于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)點P運動到線段OB的中點時,四邊形OPCD為正方形,將正方形OPCD沿著x軸的正方向移動,設(shè)平移的距離為a(0<a<4),正方形OPCD于△AOB重疊部分的面積為S.試求S與a的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案