【題目】解方程
(1)解方程:x2﹣2x﹣8=0;
(2)解不等式組 .
【答案】
(1)解:∵(x+2)(x﹣4)=0,
∴x+2=0或x﹣4=0,
解得:x=﹣2或x=4
(2)解:解不等式x﹣3(x﹣1)<1,得:x> ,
解不等式 <1,得:x<3,
∴不等式組的解集為 <x<3
【解析】(1)因式分解法求解可得;(2)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.
【考點精析】解答此題的關(guān)鍵在于理解一元一次不等式組的解法的相關(guān)知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.
(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論;
(2)在圖1的基礎(chǔ)上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關(guān)系和位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)盤,那么可直接獲得10元的購物券.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,求證:DE=AD-BE;
(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成20份),并規(guī)定:顧客每購物滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得50元、30元、20元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)盤,那么可直接獲得10元的購物券.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去批發(fā)市場購買某種圖書.第一次用1200元購書若干本,并按該書定價20元出售,很快售完.由于該書暢銷,第二次購書時,每本書批發(fā)價比第一次提高了25%,他用1800元所購該書數(shù)量比第一次多20本,又按定價售出全部圖書.
(1)求該書原來每本的批發(fā)價;
(2)該老板這兩次售書一共賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,連接CP.下列結(jié)論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE和∠BAC的外角平分線AD相交于點P,分別交AC和BC的延長線于E,D.過P作PF⊥AD交AC的延長線于點H,交BC的延長線于點F,連接AF交DH于點G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com