【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點(diǎn)P,BE=BC,PB與CE交于點(diǎn)H,PG∥AD交BC于F,交AB于G,連接CP.下列結(jié)論:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正確的有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
①分別用外角減去內(nèi)角表示∠ACB和∠APB,即可得到結(jié)論;
②根據(jù)角平分線的性質(zhì)和三角形的面積公式即可求出結(jié)論;
③根據(jù)線段垂直平分線的性質(zhì)即可得結(jié)果;
④根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)即可得到結(jié)果.
①∠ACB=∠CBE-∠CAB=2∠PBE-2∠PAB=2(∠PBE-∠PAB)=2∠APB.
②∵AP平分∠BAC,
∴P到AC,AB的距離相等,
∴S△PAC:S△PAB=AC:AB,
③∵BE=BC,BP平分∠CBE,
∴BP垂直平分CE(三線合一),
④∵∠BAC與∠CBE的平分線相交于點(diǎn)P,可得點(diǎn)P也位于∠BCD的平分線上,
∴∠DCP=∠BCP,
又∵PG∥AD,
∴∠FPC=∠DCP,
故①②③④都正確.
故答案選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次軍事演習(xí)中,藍(lán)方在﹣條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截.紅方行駛2000米到達(dá)C后,因前方無(wú)法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同距離,剛好在D處成功攔截藍(lán)方.
(1)求點(diǎn)C到公路的距離;
(2)求紅藍(lán)雙方最初的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC.
(1)用直尺和圓規(guī)作∠A的平分線和邊BC的垂直平分線;
(要求:不寫作法,但需要保留畫圖痕跡)
(2)設(shè)(1)中的和直線交于點(diǎn)P,過(guò)點(diǎn)P作PE⊥AB,垂足為點(diǎn)E,過(guò)點(diǎn)P作PF⊥AC交AC的延長(zhǎng)線于點(diǎn)F.請(qǐng)你探究BE和CF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB在平面直角坐標(biāo)系中,點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,,將△AOB沿直線BE折疊,使得OB邊落在AB上,點(diǎn)O與點(diǎn)D重合.
(1)求直線BE的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)x軸上是否存在點(diǎn)P,使△PAD為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com