如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是10m.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計).貨車正以每小時40km的速度開往乙地,當行駛1小時時,忽然接到緊急通知:前方連降暴雨,造成水位以每小時0.25m的速度持續(xù)上漲(貨車接到通知時水位在CD處,當水位達到橋拱最高點O時,禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過每小時多少千米?
【答案】分析:根據(jù)拋物線在坐標系的位置,設拋物線的解析式為y=ax2,設D、B的坐標求解析式;
解答:解:(1)設拋物線的解析式為y=ax2(a不等于0),橋拱最高點O到水面CD的距離為h米.
則D(5,-h),B(10,-h-3)

解得
∴拋物線的解析式為y=-x2

(2)水位由CD處漲到點O的時間為:1÷0.25=4(小時)
貨車按原來速度行駛的路程為:40×1+40×4=200<280
∴貨車按原來速度行駛不能安全通過此橋.
設貨車速度提高到x千米/時
當4x+40×1=280時,x=60
∴要使貨車安全通過此橋,貨車的速度應超過60千米/時.
點評:本題考查點的坐標的求法及二次函數(shù)的實際應用.此題為數(shù)學建模題,借助二次函數(shù)解決實際問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是10m.精英家教網(wǎng)
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經過此橋開往乙地,已知甲地距此橋280km(橋長忽略不計).貨車正以每小時40km的速度開往乙地,當行駛1小時時,忽然接到緊急通知:前方連降暴雨,造成水位以每小時0.25m的速度持續(xù)上漲(貨車接到通知時水位在CD處,當水位達到橋拱最高點O時,禁止車輛通行),試問:如果貨車按原來速度行駛,能否安全通過此橋?若能,請說明理由;若不能,要使貨車安全通過此橋,速度應超過每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,有一座拋物線形的拱橋,橋下的正常水位為OA,此時水面寬為40米,水面離橋的最大高度為16米,則拱橋所在的拋物線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形的拱橋,橋下面處在目前的水位時,水面寬AB=10m,如果水位上升2m,就將達到警戒線CD,這時水面的寬為8m.若洪水到來,水位以每小時0.1m速度上升,經過多少小時會達到拱頂?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20米,如果水位精英家教網(wǎng)上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標系,求此拋物線的解析式;
(2)當水位在正常水位時,有一艘寬為6米的貨船經過這里,船艙上有高出水面3.6米的長方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20m,如果水位上升3m時,水面CD的寬是1精英家教網(wǎng)0m.建立如圖所示的直角坐標系,則此拋物線的解析式為
 

查看答案和解析>>

同步練習冊答案