如圖將六邊形ABCDEF沿著直線GH折疊,使點(diǎn)A、B落在六邊形CDEFGH的內(nèi)部,則下列結(jié)論一定正確的是


  1. A.
    ∠1+∠2=900°-2(∠C+∠D+∠E+∠F)
  2. B.
    ∠1+∠2=1080°-2(∠C+∠D+∠E+∠F)
  3. C.
    ∠1+∠2=720°-(∠C+∠D+∠E+∠F)
  4. D.
    ∠1+∠2=360°-數(shù)學(xué)公式(∠C+∠D+∠E+∠F)
B
分析:由鄰補(bǔ)角及折疊的性質(zhì),可分別用∠1,∠2表示∠HGA,∠GHB,根據(jù)四邊形內(nèi)角和定理表示∠A+∠B,再根據(jù)六邊形內(nèi)角和定理將∠A+∠B轉(zhuǎn)化,得出結(jié)論.
解答:由鄰補(bǔ)角及折疊的性質(zhì),可知
∠HGA=(180°-∠1),∠GHB=(180°-∠2),
在四邊形ABHG中,
∠A+∠B=360°-(∠HGA+∠GHB)=180°+(∠1+∠2)
在六邊形ABCDEF中,
∠A+∠B=720°-(∠C+∠D+∠E+∠F),
即720°-(∠C+∠D+∠E+∠F)=180°+(∠1+∠2)
整理,得∠1+∠2=1080°-2(∠C+∠D+∠E+∠F).
故選B.
點(diǎn)評(píng):本題考查了折疊的性質(zhì),關(guān)鍵是運(yùn)用了折疊前后,對(duì)應(yīng)角相等,多邊形的內(nèi)角和定理將∠1+∠2進(jìn)行轉(zhuǎn)換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC為正三角形,點(diǎn)M是射線BC上任意一點(diǎn),點(diǎn)N是射線CA上任意一點(diǎn),且BM=CN,直線BN與AM相交于Q點(diǎn).就下面給出的三種情況(如圖①、②、③),先用量角器分別測(cè)量∠BQM的大小,然后猜測(cè)∠BQM等于多少度,并利用圖③證明你的結(jié)論.
精英家教網(wǎng)
(2)將(1)中的“正△ABC”分別改為正方形ABCD(如圖④)、正五邊形ABCDE(如圖⑤).正六邊形ABCDEF(如圖③)、…、正n邊形ABCD…X(如圖(n)),“點(diǎn)N是射線CA上任意一點(diǎn)”改為點(diǎn)N是射線CD上任意一點(diǎn),其余條件不變,根據(jù)(1)的求解思路,分別推斷∠BQM各等于多少度,將結(jié)論填入下表:精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小明在研究四邊形的相關(guān)性質(zhì)時(shí)發(fā)現(xiàn),在不改變面積的條件下,一般梯形很難轉(zhuǎn)化為菱形,但有些特殊的梯形通過(guò)分割可以轉(zhuǎn)化為菱形.例如以下的等腰梯形就可以轉(zhuǎn)化為菱形(如圖1),已知在等腰梯形ABCD中,AD∥BC,AD=10,CD=20,∠C=60°.
(1)求梯形ABCD的面積;
(2)如果將該梯形分割成幾塊,然后可以重新拼成菱形,試畫(huà)出變化后的圖形(在圖1中畫(huà)出,圖形的對(duì)應(yīng)部分標(biāo)明相同的編號(hào));
(3)在完成上述任務(wù)后,他又試著將梯形的形狀變?yōu)橹苯翘菪危ㄈ鐖D2),其它條件不變,將梯形分成幾塊.
①他能拼成一個(gè)菱形嗎?如果能,請(qǐng)?jiān)趫D2中畫(huà)出相應(yīng)的圖形;
②他能拼成一個(gè)正六邊形嗎?如果能,請(qǐng)?jiān)趫D3中畫(huà)出相應(yīng)的圖形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面材料:
小偉遇到這樣一個(gè)問(wèn)題:如圖1,在正三角形ABC內(nèi)有一點(diǎn)P,且PA=3,PB=4,PC=5,求∠APB的度數(shù).
小偉是這樣思考的:如圖2,利用旋轉(zhuǎn)和全等的知識(shí)構(gòu)造△AP′C,連接PP′,得到兩個(gè)特殊的三角形,從而將問(wèn)題解決.
請(qǐng)你回答:圖1中∠APB的度數(shù)等于
150°
150°

參考小偉同學(xué)思考問(wèn)題的方法,解決下列問(wèn)題:
(1)如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=2
2
,PB=1,PD=
17
,則∠APB的度數(shù)等于
135°
135°
,正方形的邊長(zhǎng)為
13
13
;
(2)如圖4,在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2,PB=1,PF=
13
,則∠APB的度數(shù)等于
120°
120°
,正六邊形的邊長(zhǎng)為
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•石家莊二模)閱讀下列材料:
問(wèn)題:如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=
5
,PB=
2
,PC=1,求∠BPC的度數(shù).
小明同學(xué)的想法是:已知條件比較分散,可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是他將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連接PP′.
請(qǐng)你參考小明同學(xué)的思路,解決下列問(wèn)題:
(1)圖2中∠BPC的度數(shù)為
135°
135°
;
(2)如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2
13
,PB=4,PC=2,則∠BPC的度數(shù)為
120°
120°
,正六邊形ABCDEF的邊長(zhǎng)為
2
7
2
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在正方形ABCD內(nèi)有一點(diǎn)P,PA=
5
,PB=
2
,PC=1,求∠BPC的度數(shù).
【分析問(wèn)題】根據(jù)已知條件比較分散的特點(diǎn),我們可以通過(guò)旋轉(zhuǎn)變換將分散的已知條件集中在一起,于是將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到了△BP′A(如圖2),然后連結(jié)PP′.
【解決問(wèn)題】請(qǐng)你通過(guò)計(jì)算求出圖2中∠BPC的度數(shù);
【比類問(wèn)題】如圖3,若在正六邊形ABCDEF內(nèi)有一點(diǎn)P,且PA=2
13
,PB=4,PC=2.
(1)∠BPC的度數(shù)為
120°
120°
; 
(2)直接寫(xiě)出正六邊形ABCDEF的邊長(zhǎng)為
2
7
2
7

查看答案和解析>>

同步練習(xí)冊(cè)答案