如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長線上任意一點(diǎn),以線段AG為邊作一個(gè)正方形AEFG,線段EB和GD相交于點(diǎn)H.
(1)求證:EB=GD;
(2)判斷EB與GD的位置關(guān)系,并說明理由;
(3)若AB=2,AG=,求EB的長.
分析:(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB從而GAD≌△EAB,即EB=GD; (2)EB⊥GD,由(1)得∠ADG=∠ABE則在△BDH中,∠DHB=90°所以EB⊥GD; (3)設(shè)BD與AC交于點(diǎn)O,由AB=AD=2在Rt△ABD中求得DB,所以得到結(jié)果. 解答:(1)證明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD, ∴∠GAD=∠EAB, 又∵AG=AE,AB=AD, ∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:連接BD, 由(1)得:∠ADG=∠ABE,則在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°, ∴EB⊥GD; (3)設(shè)BD與AC交于點(diǎn)O, ∵AB=AD=2在Rt△ABD中,DB=, ∴EB=GD=. 點(diǎn)評(píng):本題考查了正方形的性質(zhì),考查了利用其性質(zhì)證得三角形全等,并利用證得的條件求得邊長. |
正方形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com