如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8)。
(1)求拋物線C1關(guān)于原點(diǎn)對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S,若點(diǎn)A,點(diǎn)D同時(shí)以每秒1個(gè)單位的速度沿水平方向分別向右、向左運(yùn)動(dòng);與此同時(shí),點(diǎn)M,點(diǎn)N同時(shí)以每秒2個(gè)單位的速度沿堅(jiān)直方向分別向下、向上運(yùn)動(dòng),直到點(diǎn)A與點(diǎn)D重合為止,求出四邊形MDNA的面積S與運(yùn)動(dòng)時(shí)間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時(shí),四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動(dòng)過程中,四邊形MDNA能否形成矩形?若能,求出此時(shí)t的值;若不能,請說明理由。

解:(1)點(diǎn)A(-4,0),點(diǎn)B(-2,0),點(diǎn)E(0,8)關(guān)于原點(diǎn)的對稱點(diǎn)分別為D(4,0),C(2,0),F(xiàn)(0,-8),
設(shè)拋物線C2的解析式是,

解得,
所以所求拋物線的解析式是;
(2)由(1)可計(jì)算得點(diǎn)M(-3,-1),N(3,1),
過點(diǎn)N作,垂足為H,
當(dāng)運(yùn)動(dòng)到時(shí)刻t時(shí),,
根據(jù)中心對稱的性質(zhì),所以四邊形MDNA是平行四邊形,
所以
所以,四邊形MDNA的面積,
因?yàn)檫\(yùn)動(dòng)至點(diǎn)A與點(diǎn)D重合為止,據(jù)題意可知,所以,所求關(guān)系式是,t的取值范圍是;
(3),(),
所以時(shí),S有最大值,
提示:也可用頂點(diǎn)坐標(biāo)公式來求;
(4)在運(yùn)動(dòng)過程中四邊形MDNA能形成矩形,
由(2)知四邊形MDNA是平行四邊形,對角線是AD,MN,所以當(dāng)AD=MN時(shí)四邊形MDNA是矩形,
所以,
所以,
所以
解之得(舍),
所以在運(yùn)動(dòng)過程中四邊形MDNA可以形成矩形,此時(shí)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對稱時(shí),求C3的解析式;
(3)如圖(2),點(diǎn)Q是x軸正半軸上一點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、F為頂點(diǎn)的三角形是直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x-2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)A的橫坐標(biāo)是-1.
(1)求P點(diǎn)坐標(biāo)及a的值;
(2)如圖(1),拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)A成中心對稱時(shí),求C3的解析式y(tǒng)=a(x-h)2+k;
(3)如圖(2),點(diǎn)Q是x軸負(fù)半軸上一動(dòng)點(diǎn),將拋物線C1繞點(diǎn)Q旋轉(zhuǎn)180°后得到拋物線C4.拋物線C4的頂點(diǎn)為N,與x軸相交于E、F兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),當(dāng)以點(diǎn)P、N、E為頂點(diǎn)的三角形是直角三角形時(shí),求頂點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線c1:y=-
14
x2+bx+c
與x軸交于點(diǎn)A、B(點(diǎn)A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線c2與拋物線c1關(guān)于y軸對稱,點(diǎn)A、B的對稱點(diǎn)分別是E、D,連接CD、CB,設(shè)AD=m.
(1)拋物線c2可以看成拋物線c1向右平移
m
m
個(gè)單位得到.
(2)若m=2,求b的值.
(3)將△CDB沿直線BC折疊,點(diǎn)D的對應(yīng)點(diǎn)為G,且四邊形CDBG是平行四邊形,
①△CDB為
等邊
等邊
三角形(按邊分);
②若點(diǎn)G恰好落在拋物線c2上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B精英家教網(wǎng)的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對稱時(shí),求拋物線C3的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C1y=
12
x2
,把它平移后得拋物線C2,使C2經(jīng)過點(diǎn)A(0,8),且與拋物線C1交于點(diǎn)B(2,n).在x軸上有一點(diǎn)P,從原點(diǎn)O出發(fā)以每秒1個(gè)單位的速度沿x軸正半軸的方向移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,過點(diǎn)P作x軸的垂線l,分別交拋物線C1、C2于E、D,當(dāng)直線l經(jīng)過點(diǎn)B前停止運(yùn)動(dòng),以DE為邊在直線l左側(cè)畫正方形DEFG.
(1)判斷拋物線C2的頂點(diǎn)是否在x軸上,并說明理由;
(2)當(dāng)t為何值時(shí),正方形DEFG在y軸右側(cè)的部分的面積S有最大值?最大值為多少?
(3)設(shè)M為正方形DEFG的對稱中心.當(dāng)t為何值時(shí),△MOP為等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案