【題目】如圖,在平面直角坐標(biāo)系中,以點C(0,4)為圓心,半徑為4的圓交y軸正半軸于點A,AB是⊙C的切線.動點P從點A開始沿AB方向以每秒1個單位長度的速度運動,點QO點開始沿x軸正方向以每秒4個單位長度的速度運動,且動點PQ從點A和點O同時出發(fā),設(shè)運動時間為t()

1)當(dāng)t1時,得到P1Q1,求經(jīng)過AP1、Q1三點的拋物線解析式及對稱軸l;

2)當(dāng)t為何值時,直線PQ與⊙C相切?并寫出此時點P和點Q的坐標(biāo);

3)在(2)的條件下,拋物線對稱軸l上存在一點N,使NPNQ最小,求出點N的坐標(biāo)并說明理由.

【答案】1y, lx;(2t=2時,PQC相切,P2,8),Q8,0);(3N1,7),理由見解析.

【解析】

1)先求出t1P1Q1的坐標(biāo),然后用待定系數(shù)法即可得出拋物線的解析式,進而可求出對稱軸l的解析式;

2)當(dāng)直線PQ與圓C相切時,連接CP,CQ,根據(jù)平行線的性質(zhì)、角平分線的性質(zhì)和三角形的內(nèi)角和可得∠PCQ90°,則有RtCMPRtQMCMPQ與圓C的切點),然后根據(jù)相似三角形的性質(zhì)即可求出t的值;

3)本題是典型的“將軍飲馬”問題,解題的關(guān)鍵是確定N的位置,可先利用待定系數(shù)法求出此時拋物線的解析式,然后作出P點關(guān)于直線l的對稱點P的坐標(biāo),連接PQ,那么PQ與直線l的交點即為所求的N點,至此只要求出直線PQ的解析式,即可求出N點的坐標(biāo),問題即得解決.

解:(1)當(dāng)t1時,AP1=1,OQ1=4,則A、P1Q1的坐標(biāo)分別為A0,8)、P118)、Q14,0),

設(shè)所求拋物線解析式為yax2+bx+c,則,解得:

∴拋物線的解析式為y,對稱軸為直線lx;

2)設(shè)PQ與⊙C相切于點M,如圖1,連接CP、CM、CQ,則PAPMt,QOQM4t,

CPCQ分別平分∠APQ和∠OQP,∴,,

∵∠APQ+OQP180°,∴∠CPQ+CQP=90°

∴∠PCQ=90°,

CMPQ,∴可得RtCMPRtQMC

,即,∴t=±2

由于時間t只能取正數(shù),所以t=2,即當(dāng)運動時間t=2秒時,PQ與⊙C相切.

此時:P2,8),Q8,0);

3)∵A0,8),P2,8),Q8,0),∴設(shè)此時拋物線的解析式為,

A,P,Q代入,得:,解得:,

∴拋物線的解析式為:y,此時拋物線的對稱軸為直線lx1,

作點P關(guān)于直線l的對稱點P',如圖2,則P'08),即為點A,設(shè)P'Q與直線x1交于點N,則此時NPNQ最小,

P'08),Q80),∴直線P'Q的解析式為:y=﹣x+8,當(dāng)x1時,y=﹣1+87

因此N點的坐標(biāo)為(17).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量重慶有名的觀景點南山大金鷹的大致高度,小南同學(xué)使用的無人機進行觀察,當(dāng)無人機與大金鷹側(cè)面在同一平面,且距離水平面垂直高度GF100米時,小南調(diào)整攝像頭方向,當(dāng)俯角為45°時,恰好可以拍攝到金鷹的頭頂A點;當(dāng)俯角為63°時,恰好可以拍攝到金鷹底座點E.已知大金鷹是雄踞在一人造石臺上,石臺側(cè)面CE12.5米,坡度為10.75,石臺上方BC10米,頭部A點位于BC中點正上方.則金鷹自身高度約(  )米.(結(jié)果保留一位小數(shù),sin63°≈0.89cos63°≈0.45,tan63°≈1.96

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,過對角線AC的中點OOEACAB于點E,連接CE,若BC,OEBE,則CE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點上,,的圓心在線段上,且⊙與邊都相切.若反比例函數(shù))的圖象經(jīng)過圓心,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測區(qū),其中點C、D為監(jiān)測點,已知點C、DB在同一直線上,且ACBC,CD400米,tanADC2,∠ABC35°

1)求道路AB段的長(結(jié)果精確到1米)

2)如果道路AB的限速為60千米/時,一輛汽車通過AB段的時間為90秒,請你判斷該車是否是超速,并說明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護環(huán)境,從我做起”為主題的演講比賽. 賽后組委會整理參賽同學(xué)的成績,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

分數(shù)段(分數(shù)為x

頻數(shù)

百分比

60x70

8

20%

70x80

a

30%

80x90

16

b%

90x100

4

10%

請根據(jù)圖表提供的信息,解答下列問題:

1)表中的a ,b ;請補全頻數(shù)分布直方圖;

2)若用扇形統(tǒng)計圖來描述成績分布情況,則分數(shù)段70x80對應(yīng)扇形的圓心角的度數(shù)是 ;

3)競賽成績不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué). 學(xué)校從這4名同學(xué)中隨機抽2名同學(xué)接受電視臺記者采訪,則正好抽到一名男同學(xué)和一名女同學(xué)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點分別在軸的負半軸、軸的正半軸上,點在第二象限.將矩形繞點順時針旋轉(zhuǎn),使點落在軸上,得到矩形相交于點.若經(jīng)過點的反比例函數(shù)的圖象交于點的圖象交于點的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知,則球的半徑長是(

A. 2B. 2.5C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于MN兩點;②作直線MNBC于點D,連接AD.若ABBD,AB4,∠C30°,則△ACD的面積為(

A.B.C.D.13

查看答案和解析>>

同步練習(xí)冊答案