【題目】如圖,認真觀察下面這些算式,并結合你發(fā)現的規(guī)律,完成下列問題:
(1)請寫出:
算式⑤ ;
算式⑥ ;
(2)上述算式的規(guī)律可以用文字概括為:“兩個連續(xù)奇數的平方差能被8整除”,如果設兩個連續(xù)奇數分別為和 (為整數),請說明這個規(guī)律是成立的;
(3)你認為“兩個連續(xù)偶數的平方差能被8整除”這個說法是否也成立呢?請說明理由.
科目:初中數學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(xk)2+h.已知球與O點的水平距離為6m時,達到最高2.6m,球網與O點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )
A. 球不會過網 B. 球會過球網但不會出界
C. 球會過球網并會出界 D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)中學教學樓對面是一座小山,去年“聯通”公司在山頂上建了座通訊鐵塔.甲、乙兩位同學想測出鐵塔的高度,他們用測角器作了如下操作:甲在教學樓頂A處測得塔尖M的仰角為α,塔座N的仰角為β;乙在一樓B處只能望到塔尖M,測得仰角為θ(望不到底座),他們知道樓高AB=20m,通過查表得:tanα=0.5723,tanβ=0.2191,tanθ=0.7489;請你根據這幾個數據,結合圖形推算出鐵塔高度MN的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□的對角線相交于點,且AE∥BD,BE∥AC,OE = CD.
(1)求證:四邊形ABCD是菱形;
(2)若AD = 2,則當四邊形ABCD的形狀是_______________時,四邊形的面積取得最大值是_________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,對于點和,給出如下定義:若上存在一點不與重合,使點關于直線的對稱點在上,則稱為的反射點.下圖為的反射點的示意圖.
(1)已知點的坐標為,的半徑為,
①在點,,中,的反射點是____________;
②點在直線上,若為的反射點,求點的橫坐標的取值范圍;
(2)的圓心在軸上,半徑為,軸上存在點是的反射點,直接寫出圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某科普小組有5名成員,身高(單位:cm)分別為:160,165,170,163,172,把身高160 cm的成員替換成一位165 cm的成員后,現科普小組成員的身高與原來相比,下列說法正確的是( )
A.平均數變小,方差變小B.平均數變大,方差變大
C.平均數變大,方差不變D.平均數變大,方差變小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項體育運動,集體跳繩時,需要兩人同頻甩動繩子,當繩子甩到最高處時,其形狀可近似看作拋物線,下圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為4,離地面的高度為1,以小明的手所在位置為原點建立平面直角坐標系.
(1)當身高為15的小紅站在繩子的正下方,且距小明拿繩子手的右側1處時,繩子剛好通過小紅的頭頂,求繩子所對應的拋物線的表達式;
(2)若身高為的小麗也站在繩子的正下方.
①當小麗在距小亮拿繩子手的左側1.5處時,繩子能碰到小麗的頭嗎?請說明理由;
②設小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數據: 取3.16)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關系,并說明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(n≠0)的圖象交于第二、四象限內的A、B兩點與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=
(1)求該反比例函數和一次函數的解析式;
(2)連接OB,求S△AOC﹣S△BOC的值;
(3)點E是x軸上一點,且△AOE是等腰三角形請直接寫出滿足條件的E點的個數(寫出個數即可,不必求出E點坐標).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com