【題目】四邊形ABCD是正方形.
(1)如圖(1)所示,點G是BC邊上任意一點(不與B,C兩點重合),連接AG,作BF⊥AG于點F,DE⊥AG于點E.求證△ABF≌△DAE;
(2)在(1)中,線段EF與AF,BF的等量關(guān)系是____;(不需證明,直接寫出結(jié)論即可)
(3)如圖(2)所示,若點G是CD邊上任意一點(不與C,D兩點重合),作BF⊥AG于點F,DE⊥AG于點E,那么圖中的全等三角形是____,線段EF與AF,BF的等量關(guān)系是____.(不需證明,直接寫出結(jié)論即可)
【答案】 EF=AF-BF △ABF≌△DAE EF=BF-AF
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可知:△ABF≌△ADE;
(2)利用全等三角形的性質(zhì),AE=BF,AF=DE,得出AF-BF=EF;
(3)同理可得出圖(2),△ABF≌△DAE,EF=BF-AF.
(1) 證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中,
∠ABF=∠DAE,∠AFB=∠DEA=90°,AB=DA,
∴△ABF≌△DAE(AAS).
(2)EF=AF-BF.
證明∵△ABF≌△DAE,
∴AE=BF,
∵EF=AF-AE,
∴EF=AF-BF.
(3)△ABF≌△DAE;EF=BF-AF.
證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中
∵∠ABF=∠DAE,
∠AFB=∠DEA=90°,
AB=DA,
∴△ABF≌△DAE(AAS).
∴AE=BF,
∴EF=AE-AF=BF-AF.
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b是正實數(shù),那么, 是恒成立的.
(1)由 恒成立,說明 恒成立;
(2)已知a、b、c是正實數(shù),由 恒成立,猜測: 也恒成立;
(3)如圖,已知AB是直徑,點P是弧上異于點A和點B的一點,PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明 恒成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,邊長為4的正方形ABCD繞點D逆時針旋轉(zhuǎn)30°后能與四邊形A′B′C′D′重合.
(1)旋轉(zhuǎn)中心是哪一點?
(2)四邊形A′B′C′D′,是怎樣的圖形?面積是多少?
(3)求∠C′DC和∠CDA′的度數(shù);
(4)連接AA′,求∠DAA′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y= +x+m的頂點在直線y=x+3上,過點F(﹣2,2)的直線交該拋物線于點M、N兩點(點M在點N的左邊),MA⊥x軸于點A,NB⊥x軸于點B.
(1)先通過配方求拋物線的頂點坐標(坐標可用含m的代數(shù)式表示),再求m的值;
(2)設點N的橫坐標為a,試用含a的代數(shù)式表示點N的縱坐標,并說明NF=NB;
(3)若射線NM交x軸于點P,且PAPB= ,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是 的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論: ①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④APAD=CQCB.
其中正確的是(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD=BC,E、F分別是DC、AB邊的中點,FE的延長線分別與AD、BC的延長線交于H、G點.求證:∠AHF=∠BGF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com