【題目】已知一次函數(shù)y=2x+1的圖象與x軸、y軸分別交于A、B兩點,將這條直線進行平移后交x軸、y軸分別交于C、D,要使A、B、C、D圍成的四邊形面積為4,則直線CD的解析式為______.
【答案】y=2x-3或y=2x+
【解析】
設平移后的直線為y=2x+b,再根據(jù)A、B、C、D圍成的四邊形面積為4,分類討論求出b即可.
∵一次函數(shù)y=2x+1的圖象與x軸、y軸分別交于A、B兩點,
∴A(-,0),B(0,1),
設直線CD的解析式為y=2x+b,
∴C(-,0),D(0,b),
當點C在x軸的正半軸時,(-+)×(1-b)=4,解得b=5(舍去)或b=-3,此時直線CD的解析式為y=2x-3;
當點C在x軸的負半軸時,b-×1×=4,解得b=-(舍去)或b=,此時直線CD的解析式為y=2x+,
綜上所述,直線CD的解析式為y=2x-3或y=2x+.
故答案為y=2x-3或y=2x+.
科目:初中數(shù)學 來源: 題型:
【題目】“父母恩深重,恩憐無歇時”,每年5月的第二個星期日即為母親節(jié),節(jié)日前夕巴蜀中學學生會計劃采購一批鮮花禮盒贈送給媽媽們.
(1)經過和花店賣家議價,可在原標價的基礎上打八折購進,若在花店購買80個禮盒最多花費7680元,請求出每個禮盒在花店的最高標價;(用不等式解答)
(2)后來學生會了解到通過“大眾點評”或“美團”同城配送會在(1)中花店最高售價的基礎上降價25%,學生會計劃在這兩個網站上分別購買相同數(shù)量的禮盒,但實際購買過程中,“大眾點評”網上的購買價格比原有價格上漲m%,購買數(shù)量和原計劃一樣:“美團”網上的購買價格比原有價格下降了m元,購買數(shù)量在原計劃基礎上增加15m%,最終,在兩個網站的實際消費總額比原計劃的預算總額增加了m%,求出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解同學對體育活動的喜愛情況,某校設計了“你最喜歡的體育活動是哪一項(僅限一項)”的調查問卷.該校對本校學生進行隨機抽樣調查,以下是根據(jù)調查數(shù)據(jù)得到的統(tǒng)計圖的一部分.請根據(jù)以上信息解答以下問題:
(1)該校對多少名學生進行了抽樣調查?
(2)請補全圖1并標上數(shù)據(jù).
(3)若該校共有學生900人,請你估計該校最喜歡跳繩項目的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.
(1)求該拋物線的解析式;
(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最小?若存在,求出Q點的坐標;若不存在,請說明理由.
(3)在拋物線的第二象限圖象上是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:
①E為AB的中點;
②FC=4DF;
③S△ECF=;
④當CE⊥BD時,△DFN是等腰三角形.
其中一定正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關于直線l對稱的△A1B1C1 (要求A與A1,B與B1,C與C1相對應);
(2)求△ABC的面積;
(3)在直線l上找一點P,使得△PAC的周長最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板如圖擺放,點F是 45°角三角板△ABC的斜邊的中點,AC=4.當 30°角三角板DEF的直角頂點繞著點F旋轉時,直角邊DF,EF分別與AC,BC相交于點 M, N.在旋轉過程中有以下結論:①MF=NF;②CF與MN可能相等嗎;③MN 長度的最小值為 2;④四邊形CMFN的面積保持不變; ⑤△CMN面積的最大值為 2.其中正確的個數(shù)是_________.(填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校“體育課外活動興趣小組”,開設了以下體育課外活動項目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有 人,在扇形統(tǒng)計圖中“D”對應的圓心角的度數(shù)為 ;
(2)請你將條形統(tǒng)計圖補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3 在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=a,則△A6B6A7的邊長為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com