(2006•煙臺(tái))如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將紙片的一角折疊,使點(diǎn)C落在△ABC內(nèi),若∠1=20°,則∠2的度數(shù)為    度.
【答案】分析:根據(jù)題意,已知∠A=65°,∠B=75°,可結(jié)合三角形內(nèi)角和定理和折疊變換的性質(zhì)求解.
解答:解:∵∠A=65°,∠B=75°,
∴∠C=180°-(65°+75°)=40度,
∴∠CDE+∠CED=180°-∠C=140°,
∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-300°=60度.
故填60.
點(diǎn)評(píng):本題通過(guò)折疊變換考查三角形、四邊形內(nèi)角和定理.注意折疊前后圖形全等;三角形內(nèi)角和為180°;四邊形內(nèi)角和等于360度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2006•煙臺(tái))如圖,直線分別與y軸、x軸相交于點(diǎn)A,點(diǎn)B,且AB=5,一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為1的圓,以0.8個(gè)單位/秒的速度向y軸正方向運(yùn)動(dòng),設(shè)此動(dòng)圓圓心離開坐標(biāo)原點(diǎn)的時(shí)間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時(shí),動(dòng)圓與直線AB相切;
(3)如圖2,若在圓開始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿BA方向以1個(gè)單位/秒的速度運(yùn)動(dòng),設(shè)t秒時(shí)點(diǎn)P到動(dòng)圓圓心C的距離為s,求s與t的關(guān)系式;
(4)在(3)中,動(dòng)點(diǎn)P自剛接觸圓面起,經(jīng)多長(zhǎng)時(shí)間后離開了圓面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•煙臺(tái))如圖,直線分別與y軸、x軸相交于點(diǎn)A,點(diǎn)B,且AB=5,一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為1的圓,以0.8個(gè)單位/秒的速度向y軸正方向運(yùn)動(dòng),設(shè)此動(dòng)圓圓心離開坐標(biāo)原點(diǎn)的時(shí)間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時(shí),動(dòng)圓與直線AB相切;
(3)如圖2,若在圓開始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿BA方向以1個(gè)單位/秒的速度運(yùn)動(dòng),設(shè)t秒時(shí)點(diǎn)P到動(dòng)圓圓心C的距離為s,求s與t的關(guān)系式;
(4)在(3)中,動(dòng)點(diǎn)P自剛接觸圓面起,經(jīng)多長(zhǎng)時(shí)間后離開了圓面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•煙臺(tái))如圖,兩建筑物AB和CD的水平距離為30米,從A點(diǎn)測(cè)得D點(diǎn)的俯角為30°,測(cè)得C點(diǎn)的俯角為60°,則建筑物CD的高為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•煙臺(tái))如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•煙臺(tái))如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°

查看答案和解析>>

同步練習(xí)冊(cè)答案