【題目】已知拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)C0,3),與x軸交于AB兩點(diǎn),點(diǎn)A(﹣1,0).

I)求該拋物線的解析式;

D為拋物線對(duì)稱軸上一點(diǎn),當(dāng)△ACD的周長(zhǎng)最小時(shí),求點(diǎn)D的坐標(biāo);

)在拋物線上是否存在一點(diǎn)P,使CP恰好將以AB,C,P為頂點(diǎn)的四邊形的面積分為相等的兩部分?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】Iy=﹣x2+2x+3;()點(diǎn)D12);()點(diǎn)P5,﹣12).

【解析】

1)拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)C0,3),則拋物線的表達(dá)式為:=x2+bx+3,將點(diǎn)A的坐標(biāo)代入上式,即可求解;

2)拋物線的對(duì)稱軸為:x1,點(diǎn)A關(guān)于函數(shù)對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B30),連接BC交拋物線的對(duì)稱軸于點(diǎn)D,則點(diǎn)D為所求,即可求解;

3)當(dāng)點(diǎn)P在第一、二象限時(shí),PC是四邊形的邊,故CP不可能平分以A,B,C,P為頂點(diǎn)的四邊形的面積,當(dāng)點(diǎn)P在第三、四象限時(shí),設(shè)點(diǎn)Pm,m2+2m+3),將點(diǎn)P、C的坐標(biāo)代入一次函數(shù)表達(dá)式:ysx+n并解得:

直線PC的表達(dá)式為:y=(2mx+3,過(guò)點(diǎn)A、B分別作CP的等距離的平行線m、n,分別交y軸于點(diǎn)M、N,則點(diǎn)CMN的中點(diǎn),即63m6+2m,即可求解.

解:(1)拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)C0,3),則拋物線的表達(dá)式為:yx2+bx+3,

將點(diǎn)A的坐標(biāo)代入上式并解得:b2

故拋物線的表達(dá)式為:yx2+2x+3;

2)拋物線的對(duì)稱軸為:x1,點(diǎn)A關(guān)于函數(shù)對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B3,0),

連接BC交拋物線的對(duì)稱軸于點(diǎn)D,則點(diǎn)D為所求,

由點(diǎn)BC的坐標(biāo)得,直線BC的表達(dá)式為:yx+3,

當(dāng)x1時(shí),y2

故點(diǎn)D1,2);

3)當(dāng)點(diǎn)P在第一、二象限時(shí),PC是四邊形的邊,故CP不可能平分以A,B,C,P為頂點(diǎn)的四邊形的面積,

當(dāng)點(diǎn)P在第三、四象限時(shí),設(shè)點(diǎn)Pm,m2+2m+3),

將點(diǎn)P、C的坐標(biāo)代入一次函數(shù)表達(dá)式:ysx+n并解得:

直線PC的表達(dá)式為:y=(2mx+3

過(guò)點(diǎn)A、B分別作CP的等距離的平行線m、n,分別交y軸于點(diǎn)M、N,

則直線m的表達(dá)式為:y=(2mx+k

將點(diǎn)A的坐標(biāo)代入上式并解得:k3m6,即點(diǎn)M0,3m6),

同理可得:點(diǎn)N02m),

則點(diǎn)CMN的中點(diǎn),即63m6+2m

解得:m5

故點(diǎn)P5,12).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問(wèn)此球能否準(zhǔn)確投中?

(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC,ACB=90°,AC=BC,D是線段AB上的一點(diǎn)不與A、B重合).過(guò)點(diǎn)BBECD,垂足為E將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到線段CF連結(jié)EF設(shè)BCE度數(shù)為.

1補(bǔ)全圖形;

試用含的代數(shù)式表示CDA

2 ,的大。

3直接寫出線段AB、BE、CF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克50元,連續(xù)兩次降價(jià)后每千克32元,若每次下降的百分率相同.

1)求每次下降的百分率;

2)若每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,商場(chǎng)決定采取適當(dāng)?shù)臐q價(jià)措施,若每千克漲價(jià)1元,日銷售量將減少20千克,現(xiàn)該商場(chǎng)要保證每天盈利6000元,且要盡快減少庫(kù)存,那么每千克應(yīng)漲價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=﹣xm1+bx3m,b為常數(shù))是二次函數(shù),其圖象的對(duì)稱軸為直線x1

I)求該二次函教的解析式;

)當(dāng)﹣2≤x≤0時(shí),求該二次函數(shù)的函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水渠的橫截面呈拋物線,水面的寬度為AB(單位:米),現(xiàn)以AB所在直線為x軸,以拋物線的對(duì)稱軸為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)坐標(biāo)原點(diǎn)為O.已知AB=8米,設(shè)拋物線解析式為y=ax2﹣4

1)求a的值;

2)點(diǎn)C﹣1,m)是拋物線上一點(diǎn),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)D,連接CD,BC,BD,求BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期一升旗儀式前,李雷和韓梅梅兩位數(shù)學(xué)課代表因?yàn)榍?/span> 查作業(yè)耽擱了時(shí)間,打算勻速?gòu)慕淌遗艿?/span>600 米外的中心廣場(chǎng) 參加升旗儀式,出發(fā)時(shí)李雷發(fā)現(xiàn)鞋帶松了,停下來(lái)系鞋帶,韓 梅梅繼續(xù)跑往中心廣場(chǎng),李雷系好鞋帶后立即沿同一路線開(kāi)始 追趕韓梅梅,李雷在途中追上韓梅梅后,擔(dān)心遲到繼續(xù)以原速 度往前跑,李雷到達(dá)操場(chǎng)時(shí)升旗儀式還沒(méi)有開(kāi)始,于是李雷站 在廣場(chǎng)等待,韓梅梅繼續(xù)跑往中心廣場(chǎng).設(shè)李雷和韓梅梅兩人相距 s (米 ) ,韓梅梅跑步的時(shí)間為 t (秒), s 關(guān)于 t 的函數(shù)圖象如圖所示,則在整個(gè)運(yùn)動(dòng)過(guò)程 中,李雷和韓梅梅第一次相距 80 米后,再過(guò)_____秒鐘兩人再次相距 80 米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,點(diǎn)上,,連接,以為直徑作,分別與,交于點(diǎn),,點(diǎn)的中點(diǎn),連接,過(guò)點(diǎn)的切線,交于點(diǎn),則的長(zhǎng)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“垃圾分類”越來(lái)越受到人們的關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就“垃圾分類”知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息回答下列問(wèn)題:

1)接受問(wèn)卷調(diào)查的學(xué)生共有  人,條形統(tǒng)計(jì)圖中的值為  ;

2)扇形統(tǒng)計(jì)圖中“了解很少”部分所對(duì)應(yīng)扇形的圓心角的度數(shù)為  

3)若從對(duì)垃圾分類知識(shí)達(dá)到“非常了解”程度的2名男生和2名女生中隨機(jī)抽取2人參加垃圾分類知識(shí)競(jìng)賽,請(qǐng)用列表或畫樹(shù)狀圖的方法,求恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案