觀察:數(shù)學公式;數(shù)學公式
猜想:數(shù)學公式=________;并通過類似的計算驗證你的猜想.

5
分析:根據(jù)題目信息,被減數(shù)可以直接放到根號外面,減數(shù)作為被開方數(shù).
解答:猜想:=5
驗證如下:===5
故答案為:5
點評:本題考查了二次根式的性質(zhì)與化簡,讀懂題目信息是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:
關(guān)于x的方程:x+
1
x
=c+
1
c
的解是x1=c,x2=
1
c
;x-
1
x
=c-
1
c
(即x+
-1
x
=c+
-1
c
)的解是x1=cx2=-
1
c
;x+
2
x
=c+
2
c
的解是x1=c,x2=
2
c
x+
3
x
=c+
3
c
的解是x1=c,x2=
3
c
;…
(1)請觀察上述方程與解的特征,比較關(guān)于x的方程x+
m
x
=c+
m
c
(m≠0)
與它們的關(guān)系,猜想它的解是什么?并利用“方程的解”的概念進行驗證.
(2)由上述的觀察、比較、猜想、驗證,可以得出結(jié)論:
如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個常數(shù),那么這樣的方程可以直接得解,請用這個結(jié)論解關(guān)于x的方程:x+
2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖1,在梯形ABCD中,AD∥BC,∠C=90°,點E為CD的中點,點F在底邊BC上,且∠FAE=∠DAE.
(1)請你通過觀察、測量、猜想,得出∠AEF的度數(shù);
(2)若梯形ABCD中,AD∥BC,∠C不是直角,點F在底邊BC或其延長線上,如圖2、圖3,其他條件不變,你在(1)中得出的結(jié)論是否仍然成立,若都成立,請在圖2、圖3中選擇其中一圖進行證明;若不都成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、閱讀下文,尋找規(guī)律:已知x≠1,計算:(1-x)(1+x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4
(1)觀察上式,猜想:(1-x)(1+x+x2+…+xn)=
1-xn+1

證明你的猜想:
(2)根據(jù)你的猜想,計算:(1-2)(1+2+22+23+24+25+26)=
-127

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,AD平分∠BAC,AD=AB,CM⊥AD于M.請你通過觀察和測量,猜想線段AB、AC之和與線段AM有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
猜想:
AB+AC=2AM

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察以下等式,猜想第n個等式應(yīng)為
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)

1×2=
1
3
×1×2×3;
1×2+2×3=
1
3
×2×3×4
1×2+2×3+3×4=
1
3
×3×4×5;
1×2+2×3+3×4+4×5=
1
3
×4×5×6,…
根據(jù)以上規(guī)律,請你猜測:
1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
(n為自然數(shù))

查看答案和解析>>

同步練習冊答案