【題目】在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點CCEDBAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長.

【答案】(1)證明見解析;(2)2.

【解析】

1)根據(jù)平行四邊形的判定和菱形的判定證明即可;

2)根據(jù)菱形的性質(zhì)和勾股定理解答即可.

(1)ABDC

∴∠CAB=∠ACD

AC平分∠BAD,

∴∠CAB=∠CAD

∴∠CAD=∠ACD

DADC

ABAD,

ABDC

∴四邊形ABCD是平行四邊形.

ABAD

∴四邊形 ABCD是菱形;

(2)∵四邊形 ABCD是菱形,∠DAB60°

∴∠OAB30,∠AOB90°

AB4

OB2,AOOC2

CEDB,

∴四邊形 DBEC是平行四邊形.

CEDB4,∠ACE90°

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列兩個等式:,給出定義如下:我們稱使等式abab+1的成立的一對有理數(shù)a,b共生有理數(shù)對,記為(a,b),如:數(shù)對 , ,都是共生有理數(shù)對

1)數(shù)對 , 中是共生有理數(shù)對的是   ;

2)若(m,n)是共生有理數(shù)對,則(﹣n,﹣m   共生有理數(shù)對(填不是);

3)請再寫出一對符合條件的共生有理數(shù)對   ;(注意:不能與題目中已有的共生有理數(shù)對重復)

4)若(a3)是共生有理數(shù)對,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx(k0)沿著y軸向上平移3個單位長度后,與x軸交于點B(3,0),與y軸交于點C,拋物線y=x2+bx+c過點B、C且與x軸的另一個交點為A.

(1)求直線BC及該拋物線的表達式;

(2)設該拋物線的頂點為D,求△DBC的面積;

(3)如果點Fy軸上,且∠CDF=45°,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,AD平分∠BACBC于點D,BE平分∠ABCAD于點E, F是邊AB上一點,以BF為直徑的⊙O經(jīng)過點E

(1)求證:AD是⊙O的切線;

(2)若BC=4,cosC ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列材料,再解答下列問題:

題:分解因式:

解:將看成整體,設,則原式=

再將還原,得原式=.

上述解題用到的是整體思想,整體思想是數(shù)學解題中常用的一種思想方法,請你仿照上面的方法解答下列問題:

(1)因式分解: ; .

(2)因式分解: ; .

(3)求證:若為正整數(shù),則式子的值一定是某一個正整數(shù)的平方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3800元.每天工作8小時,一個月工作25天.月工資底薪1000元,另加計件工資,且加工1A型服裝計酬20元,加工1B型服裝計酬15 (工人月工資=底薪+計件工資)在實際工作中發(fā)現(xiàn)一名熟練工加工1A型服裝的時間是加工1B型服裝的2倍,且工作5天(即40小時)單獨加工B服裝的件數(shù)比單獨加工A服裝的件數(shù)多20件.

1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

2)一段時間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,OAC的中點,過點O的直線分別與AB,CD交于點E,F,連接BFAC于點M,連接DEBO.若∠COB60°,FOFC,則下列結論:①FBOC,OMCM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MBOE32.其中正確結論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為加強學生的安全意識,組織了全市學生參加安全知識競賽,為了解此次知識競賽成績的情況,隨機抽取了部分參賽學生的成績,整理并制作出如下的不完整的統(tǒng)計表和統(tǒng)計圖,如圖所示,請根據(jù)圖表信息解答以下問題.

組別

成績x/

頻數(shù)

A

a

B

8

C

12

D

14

(1)一共抽取了_____個參賽學生的成績;表中____;

(2)補全頻數(shù)分布直方圖;

(3)計算扇形統(tǒng)計圖中“C”對應的圓心角度數(shù);

(4)某校共有2000人,安全意識不強的學生(指成績在70分以下)估計有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l與⊙O相離,OAl于點A,交⊙O于點B,點C是⊙O上一點,連接CB并延長交直線l于點D,使AC=AD.

(1)求證:AC是⊙O的切線;

(2)若BD=2,OA=4,求線段BC的長.

查看答案和解析>>

同步練習冊答案