【題目】如圖,正方形ABCD的對角線交于點O,以AD為邊向外作Rt△ADE,∠AED=90°,連接OE,DE=6,OE=8,則另一直角邊AE的長為_____.
【答案】10;
【解析】
過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,易得四邊形EMON是正方形,點A,O,D,E共圓,則可得△OEN是等腰直角三角形,求得EN的長,繼而證得Rt△AOM≌Rt△DON,得到AM=DN,繼而求得答案.
過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,
∵∠AED=90°,
∴四邊形EMON是矩形,
∵正方形ABCD的對角線交于點O,
∴∠AOD=90°,OA=OD,
∴∠AOD+∠AED=180°,
∴點A,O,D,E共圓,
∴,
∴∠AEO=∠DEO=∠AED=45°,
∴OM=ON,
∴四邊形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=8,
∴EN=8,
∴EM=EN=8,
在Rt△AOM和Rt△DON中,
,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN-ED=8-6=2,
∴AE=AM+EM=2+8=10.
故答案為:10.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,D、E分別是半徑OA、OB的中點,C是上一點,CD=CE.
(1)求證:=;
(2)若∠AOB=120°,CD=,求半徑OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形的一邊落在矩形的一邊上,并且矩形,其相似比為,連接、.
試探究、的位置關系,并說明理由;
將矩形繞著點按順時針(或逆時針)旋轉(zhuǎn)任意角度,得到圖形、圖形,請你通過觀察、分析、判斷中得到的結(jié)論是否能成立,并選取圖證明你的判斷;
在中,矩形繞著點旋轉(zhuǎn)過程中,連接、、,且
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,為對角線上一點,且,過作,分別交、于、。動點從點出發(fā),以每秒1個單位長的速度在射線上運動。動點從點出發(fā),以每秒1個單位長的速度在線段上沿方向運動。以為邊作等邊。已知、兩點同時出發(fā),當點返回點時兩點同時停止運動。運動時間為秒.
(1)求線段,當點落在線段上時等于多少;
(2)設運動過程中與矩形的重疊部分面積為,請直接寫出與的函數(shù)關系式及自變量的取值范圍;
(3)將四邊形繞點旋轉(zhuǎn)一周,在此過程中,設直線分別與直線、交于點、,當是以為底角的等腰三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強校園文化建設,某校準備打造校園文化墻,需用甲、乙兩種石材經(jīng)市場調(diào)查,甲種石材的費用(元)與使用面積間的函數(shù)關系如圖所示,乙種石材的價格為每平方米元.
(1)求與間的函數(shù)解析式;
(2)若校園文化墻總面積共,其中使用甲石材,設購買兩種石材的總費用為元,請直接寫出與間的函數(shù)解析式;
(3)在(2)的前提下,若甲種石材使用面積多于,且不超過乙種石材面積的倍,那么應該怎樣分配甲、乙兩種石材的面積才能使總費用最少?最少總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,小明同學作出兩條角平分線,得到交點,就指出若連接,則平分,你覺得有道理嗎?為什么?
(2)如圖②,中,,,,的角平分線上有一點,設點到邊的距離為.(為正實數(shù))
小季、小何同學經(jīng)過探究,有以下發(fā)現(xiàn):
小季發(fā)現(xiàn):的最大值為.
小何發(fā)現(xiàn):當時,連接,則平分.
請分別判斷小季、小何的發(fā)現(xiàn)是否正確?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com