【題目】為了迎接運(yùn)動(dòng)會(huì),某校八年級學(xué)生開展了“短跑比賽”。甲、乙兩人同時(shí)從A地出發(fā),沿同一條道路去B地,途中都使用兩種不同的速度與。
甲前一半的路程使用速度,另一半的路程使用速度;乙前一半的時(shí)間用速度,另一半的時(shí)間用速度。
(1)甲、乙二人從A地到達(dá)B地的平均速度分別為;則___________,____________
(2)通過計(jì)算說明甲、乙誰先到達(dá)B地?為什么?
【答案】(1);(2)乙先到達(dá)B地.
【解析】
(1)設(shè)AB兩地的路程為s,乙從A地到B地的總時(shí)間為a.
先算出前一半的路程所用的時(shí)間,后一半的路程所用的時(shí)間相加,速度=路程÷時(shí)間求出V甲;
先算出前一半的時(shí)間所行的路程,后一半的時(shí)間所行的路程相加,速度=路程÷時(shí)間求出V乙;
(2)看甲、乙兩人誰先到達(dá)B地,因?yàn)槁烦桃欢?/span>,比較V甲,V乙的大小即可.
(1)設(shè)AB兩地的路程為s,乙從A地到B地的總時(shí)間為a.
v甲=,v乙=.
(2)v乙﹣v甲=-=
∵0<v1<v2,∴v乙﹣v甲>0,乙先到B地.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中:任意一個(gè)三角形的三條高至少有一條在此三角形內(nèi)部;以a,b,c為邊b,c都大于0,且可以構(gòu)成一個(gè)三角形;一個(gè)三角形內(nèi)角之比為3:2:1,此三角形為直角三角形;有兩個(gè)角和一條邊對應(yīng)相等的兩個(gè)三角形全等;正確的有 個(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表:
x | … | ﹣3 | - | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分;
(3)觀察函數(shù)圖象,寫出2條函數(shù)的性質(zhì);
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個(gè)交點(diǎn),所對應(yīng)的方程x2﹣2|x|=0有個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計(jì)劃對面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),連接PA,PB,PC,以BP為邊作∠PBQ=60,且BQ=BP,連接CQ.
(1)觀察并猜想AP與CQ之間的大小關(guān)系,并證明你的結(jié)論;
(2)若PA=3,PB=4,PC=5,連接PQ,試判斷△PQC的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,與△EBD相似的三角形是( )
A.△ABC
B.△ADE
C.△DAB
D.△BDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰用刻度尺畫已知角的平分線,如圖,在∠MAN兩邊上分別量取AB=AC,AE=AF,連接FC,EB交于點(diǎn)D,作射線AD,則圖中全等的三角形共有________對.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù) 的圖象與x軸,y軸分別交于點(diǎn)A、B,與函數(shù)的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2,在x軸上有一點(diǎn)P(a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和的圖象于點(diǎn)C、D.
(1)求點(diǎn)M、點(diǎn)A的坐標(biāo);
(2)若OB=CD,求a的值,并求此時(shí)四邊形OPCM的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com