(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAP繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿(mǎn)足什么條件時(shí),∠PQC=90°?請(qǐng)說(shuō)明.
【答案】分析:(1)由旋轉(zhuǎn)的性質(zhì)可得到的條件是:①BP=BQ、PA=QC,②∠ABP=∠CBQ;
由②可證得∠PBQ=∠CBP+∠CBQ=∠CBP+∠ABP=∠ABC=60°,聯(lián)立BP=BQ,即可得到△BPQ是等邊三角形的結(jié)論,則BP=PQ;將等量線(xiàn)段代換后,即可得出PQ2+QC2=PC2,由此可證得∠PQC=90°;
(2)由(1)的解題思路知:△PBQ是等腰Rt△,則PQ2=2PB2,其余過(guò)程同(1),只不過(guò)所得結(jié)論稍有不同.
解答:解:(1)證明:由旋轉(zhuǎn)的性質(zhì)知:BP=BQ、PA=QC,∠ABP=∠CBQ;
∵△ABC是等邊三角形,
∴∠ABC=60°,即∠CBP+∠ABP=60°;
∵∠ABP=∠CBQ,
∴∠CBP+∠CBQ=60°,即∠PBQ=60°;
又∵BP=BQ,∴△BPQ是等邊三角形;
∴BP=PQ;
∵PA2+PB2=PC2,即PQ2+QC2=PC2;
∴△PQC是直角三角形,且∠PQC=90°;

(2)PA2+2PB2=PC2;理由如下:
同(1)可得:△PBQ是等腰直角三角形,則PQ=PB,即PQ2=2PB2;
由旋轉(zhuǎn)的性質(zhì)知:PA=QC;
在△PQC中,若∠PQC=90°,則PQ2+QC2=PC2,即PA2+2PB2=PC2;
故當(dāng)PA2+2PB2=PC2時(shí),∠PQC=90°.
點(diǎn)評(píng):此題考查了等邊三角形、等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),直角三角形的判定及勾股定理的應(yīng)用等知識(shí),能夠正確的判斷出△BPQ的形狀,從而得到BP、PQ的數(shù)量關(guān)系,是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、(1)如圖,在圖1中,互不重疊的三角形共有3個(gè),在圖2中,互不重疊的三角形共有5個(gè),在圖3中,互不重疊的三角形共有7個(gè),…,則在第n個(gè)圖形中,互不重疊的三角形共有
2n+1
個(gè).(用含n的代數(shù)式表示)

(2)若在如圖4所示的n邊形中,P是A1An邊上的點(diǎn),分別連接PA2、PA3、PA4…PAn-1,得到n-1個(gè)互不重疊的三角形.

你能否根據(jù)這樣的劃分方法寫(xiě)出n邊形的內(nèi)角和公式并說(shuō)明你的理由;
(3)反之,若在四邊形內(nèi)部有n個(gè)不同的點(diǎn),按照(1)中的方法可得k個(gè)互不重疊的三角形,試探究n與k的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、根據(jù)如圖2所示的(1),(2),(3)三個(gè)圖所表示的規(guī)律,依次下去第n個(gè)圖中平行四邊形的個(gè)數(shù)是
3n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點(diǎn)B為圓心,AB長(zhǎng)為半徑的圓的一段弧,點(diǎn)E是邊AD上的任意一點(diǎn)(點(diǎn)E與點(diǎn)A、D不重合),過(guò)E作AC所在圓的切線(xiàn),交邊DC于點(diǎn)F,G為切點(diǎn).
(1)當(dāng)∠DEF=45°時(shí),求證:點(diǎn)G為線(xiàn)段EF的中點(diǎn);
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線(xiàn)EF翻折后得△D1EF,當(dāng)EF=
5
6
時(shí),討論△精英家教網(wǎng)AD1D與△ED1F是否相似,如果相似,請(qǐng)加以證明;如果不相似,只要求寫(xiě)出結(jié)論,不要求寫(xiě)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°
(1)如圖2,若點(diǎn)C、A、D在同一條直線(xiàn)上,且點(diǎn)E在A(yíng)B上,連接CE、BD,試判斷CE與BD有什么樣的關(guān)系,并說(shuō)明理由.
(2)將△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖3所示的位置,同樣連接CE、BD,(1)中的結(jié)論還成立嗎?并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小強(qiáng)和小勇利用課本上學(xué)過(guò)的知識(shí)來(lái)進(jìn)行臺(tái)球比賽.
(1)小強(qiáng)把白球放在如圖1所示的位置,想通過(guò)擊打白球撞擊黑球,使黑球撞擊AC邊后反彈進(jìn)F洞.想一想,小強(qiáng)這樣擊打,黑球能進(jìn)F洞嗎?請(qǐng)用畫(huà)圖的方法驗(yàn)證你的判斷,并說(shuō)明理由.
(2)小勇想通過(guò)擊打白球撞擊黑球,使黑球至多撞擊臺(tái)球桌邊一次后進(jìn)A洞,請(qǐng)你替小勇設(shè)計(jì)兩種方案,并分別在如圖2、圖3所示的臺(tái)球桌上畫(huà)出示意圖,解釋你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案