【題目】如圖1,點A,B,O,C為數(shù)軸上四點,點A對應(yīng)數(shù)aa﹣2),點O對應(yīng)0,點C對應(yīng)3,AB=2 AB表示點A到點B的距離).

1)填空:點C到原點O的距離   ,:點B對應(yīng)的數(shù)   .(用含有a的式子)

2)如圖2,將一刻度尺放在數(shù)軸上,刻度尺上“6cm”“8.7cm”分別對應(yīng)數(shù)軸上的點O和點C,若BC=5,求a的值和點A在刻度尺上對應(yīng)的刻度.

3)如圖3,在(2)的條件下,點A1單位長度/秒的逮度向右運動,同時點C向左運動,若運動3秒時,點A和點C到原點D的距離相等,求點C的運動速度.)

【答案】13;a+2;(2C對應(yīng)3,A在刻度尺上對應(yīng)的刻度為2.4 cm;(3C的速度是單位長度/秒或單位長度/秒.

【解析】試題分析:(1)根據(jù)兩點間的距離解答即可;

2)根據(jù)兩點間的距離解答即可;

3)根據(jù)題意列出方程解答即可.

試題解析:1)點C到原點O的距離3;點B對應(yīng)的數(shù)a+2;

2AB=2BC=5C對應(yīng)3

a=3﹣7=﹣4,

∵刻度尺上“6cm”“8.7cm”分別對應(yīng)數(shù)軸上的點D和點C,又OC=3

8.7﹣6÷3=0.9

即個單位長度對應(yīng)0.9cm,

AC=7

∴點A在刻度尺上對應(yīng)的刻度

8.7﹣0.9×7=2.4 cm;

33秒鐘時點A對應(yīng)﹣1

①點C與點A關(guān)于原點對稱

C的速度單位長度/秒;

②點C與點A重合點C的速度單位長度/秒;

綜上點C的速度是單位長度/秒或單位長度/秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN∥PQ,點A在直線MN與PQ之間,點B在直線MN上,連結(jié)AB.∠ABM的平分線BC交PQ于點C,連結(jié)AC,過點A作AD⊥PQ交PQ于點D,作AF⊥AB交PQ于點F,AE平分∠DAF交PQ于點E,若∠CAE=45°,∠ACB=∠DAE,則∠ACD的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小明,小紅等同學(xué)隨父母一同去某景點旅游,在購買門票時,小明和小紅有圖1所示的對話,根據(jù)圖2的門票票價和圖1所示的對話內(nèi)容完成下列問題.

(1)他們一共去了幾個成人幾個學(xué)生?

(2)請你幫他們算一算,用哪種方式買票更省錢,省多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團委會為了解該校學(xué)生的課余活動情況,采取抽樣的辦法,從閱讀、運動、娛樂、其它等四個方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖(如圖),請你根據(jù)圖中提供的信息解答下列問題:

(1)這次抽樣中,一共調(diào)查了多少名學(xué)生?
(2)“其它”在扇形圖中所占的圓心角是多少度?
(3)若該校有2500名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生愛好閱讀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課外活動時李老師來教室布置作業(yè),有一道題只寫了學(xué)校校辦廠需制作一塊廣告牌,請來兩名工人.已知師傅單獨完成需4天,徒弟單獨完成需6,就因校長叫他聽一個電話而離開教室.

(1)調(diào)皮的小劉說:讓我試一試,上去添了兩人合作需要幾天完成?請你就小劉添法進行解答.

(2)李老師回教室后選了兩位同學(xué)的問題,合起來在黑板上寫出:現(xiàn)由徒弟先做1天,再兩人合作,完成后共得到報酬450元,如果按各完成工作量計算報酬,那么該如何分配?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組進行了探究活動.如圖,已知一架竹梯AB斜靠在墻角MON處,竹梯AB=13m,梯子底端離墻角的距離BO=5m.

(1)求這個梯子頂端A距地面有多高;

(2)如果梯子的頂端A下滑4 m到點C,那么梯子的底部B在水平方向上滑動的距離BD=4 m嗎?為什么?

(3)亮亮在活動中發(fā)現(xiàn)無論梯子怎么滑動,在滑動的過程中梯子上總有一個定點到墻角O的距離始終是不變的定值,會思考問題的你能說出這個點并說明其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=5,點E、F是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,AC=60cm,A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DFBC于點F,連接DE,EF.

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;

(3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

查看答案和解析>>

同步練習(xí)冊答案