【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
【答案】
【解析】試題分析:(1)由矩形的性質(zhì)得出OA=OC,OB=OD,AC=BD,∠ABC=90°,證出OE=OF,由SAS證明△AOE≌△COF,即可得出AE=CF;
(2)證出△AOB是等邊三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的長,即可得出矩形ABCD的面積.
試題解析:(1)證明:∵四邊形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等邊三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==,∴矩形ABCD的面積=ABBC=6×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì),1980年世界人口的分布狀況是:亞洲25.8億人,歐洲7.5億人,非洲4.6億人,拉丁美洲3.5億人,北美洲2.4億人,大洋洲0.2億人,全球合計(jì)44.0億人.
(1)請制作一張統(tǒng)計(jì)圖描述以上統(tǒng)計(jì)數(shù)據(jù).
(2)請根據(jù)統(tǒng)計(jì)表格中的數(shù)據(jù)制作扇形統(tǒng)計(jì)圖.
(3)從以上統(tǒng)計(jì)圖、表中,你能得到哪些信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A為數(shù)軸上表示﹣3的點(diǎn),將A點(diǎn)沿著數(shù)軸向右移動5個單位長度后到點(diǎn)B,點(diǎn)B表示的數(shù)為( 。
A.2B.﹣2C.8D.﹣8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.
(1)求證:△AEF≌△DCE;
(2)若CD=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在AD邊上,點(diǎn)F在AD的延長線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級二班的同學(xué)參加課外活動的情況為樣本,對其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂類活動的學(xué)生人數(shù)為 人,參加球類活動的人數(shù)的百分比為 ;
(2)請把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動的人數(shù)約為 ;
(4)該班參加舞蹈類活動的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,電訊公司在由西向東埋設(shè)通訊電纜線,他們從點(diǎn)A埋設(shè)到點(diǎn)B時突然發(fā)現(xiàn)碰到了一個具有研究價值的古墓,不得不改變方向繞開古墓,結(jié)果改為沿南偏東40°方向埋設(shè)到點(diǎn)O,再沿古墓邊緣埋設(shè)到點(diǎn)C處,測∠BOC=60°.現(xiàn)要恢復(fù)原來的正東方向CD,則∠OCD應(yīng)等于多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動,點(diǎn)B在直線MN上運(yùn)動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com