如圖,在平面直角坐標(biāo)系中,M為x軸正半軸上的一點(diǎn),⊙M與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),若A(-1,0),C點(diǎn)的坐標(biāo)為

(1)求M點(diǎn)的坐標(biāo);
(2)如圖,P為上的一個動點(diǎn),CQ平分∠PCD.當(dāng)P點(diǎn)運(yùn)動時,線段AQ的長度是否改變?若不變,請求其值;若改變,請求出其變化范圍;

(3)如圖,以A為圓心AC為半徑作⊙A,P為⊙A上不同于C、D的一個動點(diǎn),直線PC交⊙M于點(diǎn)Q,K為PQ的中點(diǎn),當(dāng)P點(diǎn)運(yùn)動時,現(xiàn)給出兩個結(jié)論:①的值不變;②線段OK的長度不變.其中有且只有一個結(jié)論正確,選擇正確的結(jié)論證明并求其值.

【答案】分析:(1)作輔助線,連接MC,在Rt△COM中,運(yùn)用勾股定理可將⊙M的半徑求出,已知點(diǎn)A的坐標(biāo),進(jìn)而可將圓心M的坐標(biāo)求出;
(2)作輔助線,連接AC,根據(jù)圓周角推論,等弧所對的圓周角相等,可得:∠ACD=∠P,又CQ平分∠OCP,可得:∠PCQ=∠OCQ,故:∠ACD+∠OCQ=∠PCQ+∠P,即∠ACQ=∠AQC,所以AQ=AC=2為定值;
(3)線段OK的長度不變,作輔助線,連接PD、QD、KD,可得:⊙A、⊙M為等圓,=,∠DPQ=∠DQP,△DPQ為等腰三角形,又K為PQ的中點(diǎn),可得:DK⊥PQ,故在Rt△DKC中,OK為斜邊的中線.
解答:解:(1)連接MC,設(shè)⊙M的半徑為R
∵A(-1,0),C(0,),OC2+OM2=MC2

解得R=2.
∴M點(diǎn)的坐標(biāo)為(1,0).

(2)AQ不變,AQ=AC=2.
連接AC,∵∠ACD=∠P
又∵CQ平分∠OCP
∴∠PCQ=∠OCQ
∴∠ACD+∠OCQ=∠PCQ+∠P
即:∠ACQ=∠AQC
∴AQ=AC=2.

(3)OK不變,OK=
連接PD、QD、KD,
∵AC==2
∴⊙A的半徑為2
∵⊙A的半徑為2,⊙M的半徑為2
∴⊙A、⊙M為等圓

∴∠DPQ=∠DQP
∴DQ=DP
∵K為PQ的中點(diǎn)
∴DK⊥PQ
∵OC=OD
=OC=
點(diǎn)評:本題考查垂徑定理的應(yīng)用.解此類問題一般要把半徑、弦心距、弦的一半構(gòu)建在一個直角三角形里,運(yùn)用勾股定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案