【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點,CE⊥AD于E,BF∥AC交CE的延長線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
【答案】
(1)解:∵在Rt△ABC中,∠ACB=90°,AC=BC,
∴∠CAB=∠CBA=45°,
∵CE⊥AD,
∴∠CAD=∠BCF,
∵BF∥AC,
∴∠FBA=∠CAB=45°
∴∠ACB=∠CBF=90°,
在△ACD與△CBF中,
∵ ,
∴△ACD≌△CBF;
(2)解:證明:∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,
∴∠BCE=∠CAE.
∵AC⊥BC,BF∥AC.
∴BF⊥BC.
∴∠ACD=∠CBF=90°,
在△ACD與△CBF中,
∵ ,
∴△ACD≌△CBF,
∴CD=BF.
∵CD=BD= BC,
∴BF=BD.
∴△BFD為等腰直角三角形.
∵∠ACB=90°,CA=CB,
∴∠ABC=45°.
∵∠FBD=90°,
∴∠ABF=45°.
∴∠ABC=∠ABF,即BA是∠FBD的平分線.
∴BA是FD邊上的高線,BA又是邊FD的中線,
即AB垂直平分DF
【解析】(1)根據(jù)∠ACB=90°,AC=BC,求得∠CAD=∠BCF,再利用BF∥AC,求得∠ACB=∠CBF=90°,然后利用ASA即可證明△ACD≌△CBF,
(2)利用同角的余角相等得出,∠BCE=∠CAE,再根據(jù)平行線的性質得出∠ACD=∠CBF=90°,然后由ASA判定△ACD≌△CBF得到BF=BD,再根據(jù)角度之間的數(shù)量關系求出∠ABC=∠ABF,即BA是∠FBD的平分線,從而利用等腰三角形三線合一的性質求證即可
【考點精析】根據(jù)題目的已知條件,利用平行線的性質和等腰三角形的性質的相關知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;等腰三角形的兩個底角相等(簡稱:等邊對等角).
科目:初中數(shù)學 來源: 題型:
【題目】每年淘寶網都會舉辦“雙十一”購物狂歡節(jié),許多商家都會利用這個契機進行打折讓利的促銷活動.甲網店銷售一件A商品的成本為36元,網上標價為110元.“雙十一”活動當天,為了吸引買主,連續(xù)兩次降價銷售A商品,問平均每次降價率為多少時,才能使這件A商品的利潤率為10%?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側面的影長EC=h,太陽光線與水平線的夾角為α .
(1) 用含α的式子表示h(不必指出α的取值范圍);
(2) 當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光 ?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x<0)的圖象交于點A(﹣1,m),與x軸交于點B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點M,與x軸交于點N,連接AN,S△AMN=,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點P位于x軸下方,距離x軸5個單位,位于y軸右方,距離y軸3個單位,那么P點的坐標是( )
A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,點D在射線BC上(與B、C兩點不重合),以AD為邊作正方形ADEF,使點E與點B在直線AD的異側,射線BA與射線CF相交于點G.
(1)若點D在線段BC上,如圖1.
①依題意補全圖1;
②判斷BC與CG的數(shù)量關系與位置關系,并加以證明;
(2)若點D在線段BC的延長線上,且G為CF中點,連接GE,AB=,則GE的長為_____,并簡述求GE長的思路.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com