【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B、C均在格點(diǎn)上.
(1)邊AC的長(zhǎng)等于_____.
(2)以點(diǎn)C為旋轉(zhuǎn)中心,把△ABC順時(shí)針旋轉(zhuǎn),得到△A'B'C',使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'恰好落在邊AC上,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,作出旋轉(zhuǎn)后的圖形,并簡(jiǎn)要說明作圖的方法(不要求證明).
【答案】(1)5;(2)取格點(diǎn)E,F,M,N,作直線EF,直線MN,MN與EF交于點(diǎn)A′,EF與AC交于點(diǎn)B′,連接CA′.△A'B'C即為所求.作圖見解析.
【解析】
(1)先根據(jù)網(wǎng)格確定AB、BC的長(zhǎng),然后根據(jù)勾股定理即可解答;
(2)利用格點(diǎn)構(gòu)造全等三角形CB'=FH=3,EF⊥AC, A'B'=4,從而點(diǎn)E、F、M、N,作直線EF,直線MN,MN與EF交于點(diǎn)A',EF與AC交于點(diǎn)B',連接CA'即可.
解:(1)根據(jù)網(wǎng)格可知:
AB=4,BC=3,
∴AC==5,
故答案為:5;
(2)取格點(diǎn)E,F,M,N,作直線EF,直線MN,
MN與EF交于點(diǎn)A′,
EF與AC交于點(diǎn)B′,
連接CA′.
△A'B'C即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x﹣1)2+4與x軸交于A(﹣1,0).
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)一次函數(shù)y2=x+1的圖象與拋物線相交于A,C兩點(diǎn),過點(diǎn)C作CB垂直于x軸于點(diǎn)B,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“停課不停學(xué),學(xué)習(xí)不延期”,某市通過教育資源公共服務(wù)平臺(tái)和有線電視為全市中小學(xué)開設(shè)在線“空中課堂”,為了解學(xué)生每天的學(xué)習(xí)時(shí)間情況,在全市隨機(jī)抽取了部分初中學(xué)生進(jìn)行問卷調(diào)查,現(xiàn)將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問題:
組別 | 學(xué)習(xí)時(shí)間x(h) | 人數(shù)(人) |
A | 2.5<x≤3 | 40 |
B | 3<x≤3.5 | 170 |
C | 3.5<x≤4 | 350 |
D | 4<x≤4.5 | |
E | 4.5<x≤5 | 90 |
F | 5小時(shí)以上 | 50 |
表1
(1)這次參與問卷調(diào)查的初中學(xué)生有 人,中位數(shù)落在 組.
(2)圖3中D組對(duì)應(yīng)的角度是 ,并補(bǔ)全圖2 條形統(tǒng)計(jì)圖.
(3)若某市有初中學(xué)生2.8萬人,請(qǐng)估計(jì)每天參與“空中課堂”學(xué)習(xí)時(shí)間3.5到4.5小時(shí)(不包括3.5小時(shí))的初中學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形紙片ABCD中,AD∥BC,∠B=90°,BC=CD=6, ∠C=60°.點(diǎn)E是邊AD上一點(diǎn),連接BE,將△ABE沿BE翻折得到△HBE .
(1)當(dāng)點(diǎn)B、D、H三點(diǎn)在一直線上時(shí),求線段AE的長(zhǎng);
(2)當(dāng)點(diǎn)A的對(duì)稱點(diǎn)H正好落在DC上時(shí),有動(dòng)點(diǎn)P從點(diǎn)H出發(fā)沿線段HB向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),速度均為每秒1個(gè)單位長(zhǎng)度,連接PQ交折痕BE于點(diǎn)M.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
① 探究:當(dāng)時(shí)間t為何值時(shí),△PBM為等腰三角形;
② 連接AM,請(qǐng)直接寫出BM+2AM的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某縣美化城市工程招投標(biāo)中,有甲、乙兩個(gè)工程隊(duì)投標(biāo)經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要30天,若由甲隊(duì)先做10天,剩下的工程由甲、乙合作12天可完成.問:
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天需付工程款3.5萬元,乙隊(duì)施工一天需工程款2萬元,該工程計(jì)劃用時(shí)不超過35天,在不超過計(jì)劃天數(shù)的前提下,由甲隊(duì)先單獨(dú)施工若干天,剩下的工程由乙隊(duì)單獨(dú)完成,那么安排甲隊(duì)單獨(dú)施工多少天工程款最省?最省的工程款是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4(a≠0)與x軸交于A(﹣3,0),C (4,0)兩點(diǎn),與y軸交于點(diǎn)B.
(1)求這條拋物線的頂點(diǎn)坐標(biāo);
(2)已知AD=AB(點(diǎn)D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過t(s)的移動(dòng),線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對(duì)稱軸上是否存在一點(diǎn)M,使MQ+MC的值最?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點(diǎn),直線OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線;
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=2∠C,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧,交BC于點(diǎn)D,交AC于點(diǎn)G;再分別以點(diǎn)B和點(diǎn)D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)E,作射線AE交BC于點(diǎn)F,若以點(diǎn)G為圓心,GC長(zhǎng)為半徑作兩段弧,一段弧過點(diǎn)C,而另一段弧恰好經(jīng)過點(diǎn)D,則此時(shí)∠FAC的度數(shù)為( 。
A.54°B.60°C.66°D.72°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC,將△ABC繞著點(diǎn)A旋轉(zhuǎn)后,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別記為B1、C1,如果點(diǎn)B1落在射線BD上,那么CC1的長(zhǎng)度為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com