【題目】如圖,有一塊正方形,小王連接對角線后,作的平分線交于點(diǎn),又將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)后到的位置,并延長交于點(diǎn).
(1)求證:;
(2)若,求的長.
【答案】(1)證明見解析;(2)BE的長為6.
【解析】
(1)先根據(jù)角平分線的定義得出,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而有,然后根據(jù)相似三角形的判定即可得證;
(2)先根據(jù)(1)的結(jié)論求出DG的長,再根據(jù)正方形的性質(zhì)、三角形的內(nèi)角和定理得出,從而判定出是等腰三角形,然后根據(jù)等腰三角形的性質(zhì)得出,最后根據(jù)旋轉(zhuǎn)的性質(zhì)得出,由此即可得.
(1)平分
由旋轉(zhuǎn)的性質(zhì)得:
在和中,
;
(2)由(1)可知:,即
解得或(不符題意,舍去)
四邊形ABCD是正方形
由(1)可知:
即
是等腰三角形
是邊DF上的中線(等腰三角形的三線合一)
由旋轉(zhuǎn)的性質(zhì)得:
故BE的長為6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店要運(yùn)一批貨物,租用甲、乙兩車運(yùn)送.若兩車合作,各運(yùn)12趟才能完成,需支付運(yùn)費(fèi)共4800元;若甲、乙兩車單獨(dú)運(yùn)完這批貨物,則乙車所運(yùn)趟數(shù)是甲車的2倍;已知乙車毎趟運(yùn)費(fèi)比甲車少200元.
(1)分別求出甲、乙兩車每趟的運(yùn)費(fèi);
(2)若單獨(dú)租用甲車運(yùn)完此批貨物,需運(yùn)多少趟;
(3)若同時(shí)租用甲、乙兩車,則甲車運(yùn)x趟,乙車運(yùn)y趟,才能運(yùn)完此批貨物,其中x、y均為正整數(shù),設(shè)總運(yùn)費(fèi)為w(元),求w與x的函數(shù)關(guān)系式,直接寫出w的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,為銳角,點(diǎn)為射線上一點(diǎn),聯(lián)結(jié),以為一邊且在的右側(cè)作正方形.
(1)如果,,
①當(dāng)點(diǎn)在線段上時(shí)(與點(diǎn)不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;
②當(dāng)點(diǎn)在線段的延長線上時(shí),如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果,是銳角,點(diǎn)在線段上,當(dāng)滿足什么條件時(shí),(點(diǎn)不重合),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會,很多學(xué)校都開展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB,BC兩部分組成,AB,BC的長度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α為20°,BC與水平面的夾角β為45°,則他下降的高度為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線M:y=ax2-4ax+a-1(a≠0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),拋物線的頂點(diǎn)為D.
(1)拋物線M的對稱軸是直線______;
(2)當(dāng)AB=2時(shí),求拋物線M的函數(shù)表達(dá)式以及頂點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,直線l:y=kx+b(k≠0)經(jīng)過拋物線的頂點(diǎn)D,直線y=n與拋物線M有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為x1,x2,直線y=n與直線l的交點(diǎn)的橫坐標(biāo)記為x3(x3<4),若當(dāng)-2≤n≤-1時(shí),總有x1-x3<x3-x2<0,請結(jié)合函數(shù)的圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,約成書于四、五世紀(jì).現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分?jǐn)?shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”
譯文:“用一根繩子去量一根長木,繩子還剩余4.5尺,將繩子對折再量長木,長木還剩余1尺,問長木長多少尺?”
請解答上述問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸是,且過點(diǎn)(,0),有下列結(jié)論:①;②;③;④;⑤;其中正確的結(jié)論個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種銷售成本為40元/千克的水產(chǎn)品,若按50元/千克銷售,一個(gè)月可售出500千克,銷售價(jià)每漲價(jià)1元,月銷售量就減少10千克.
(1)寫出月銷售利潤(單位:元)與售價(jià)(單位:元/千克)之間的函數(shù)關(guān)系式.
(2)商場將在月銷售成本不超過3000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價(jià)應(yīng)定為多少?
(3)當(dāng)售價(jià)定為多少元時(shí),會獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)E為AC中點(diǎn),點(diǎn)F在邊BC上,AF交DE于點(diǎn)G,點(diǎn)H是FC的中點(diǎn),連接GH.
(1)如圖1,求證:四邊形GHCE是平行四邊形;
(2)如圖2,當(dāng)AB=AC,點(diǎn)F是BC中點(diǎn)時(shí),在不添加任何輔助線的情況下,請直接寫出圖中所有長度等于BF的線段.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com