【題目】某專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動(dòng)鞋,其進(jìn)價(jià)和售價(jià)如下表所示。已知用3000元購進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)元/雙) | m | m-30 |
售價(jià)(元/雙) | 300 | 200 |
(1)求m的值;
(2)要使購進(jìn)的甲,乙兩種運(yùn)動(dòng)鞋共200雙的總利潤不少于21700元且不超過22300元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店決定對甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(60<a<80)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變,那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
【答案】(1)m=150;(2)該專賣店有9種進(jìn)貨方案;(3)此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋82雙,購進(jìn)乙種運(yùn)動(dòng)鞋118雙.
【解析】
(1)根據(jù)“用3000元購進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同”列出方程并解答;
(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200x)雙,然后根據(jù)總利潤列出一元一次不等式,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;
(3)設(shè)總利潤為W,根據(jù)總利潤等于兩種鞋的利潤之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
(1)依題意得: ,
解得:m=150,
經(jīng)檢驗(yàn):m=150是原方程的根,
∴m=150;
(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,則乙種運(yùn)動(dòng)鞋(200﹣x)雙,根據(jù)題意得,
解得:81≤x≤90,
∵x為正整數(shù),
∴該專賣店有9種進(jìn)貨方案;
(3)設(shè)總利潤為W元,則
W=(300﹣150﹣a)x+(200﹣120)(200﹣x)=(70﹣a)x+16000,
①當(dāng)60<a<70時(shí),70﹣a>0,W隨x的增大而增大,當(dāng)x=90時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋90雙,購進(jìn)乙種運(yùn)動(dòng)鞋110雙;
②當(dāng)a=70時(shí),70﹣a=0,W=16000,(2)中所有方案獲利都一樣;
③當(dāng)70<a<80時(shí),70﹣a<0,W隨x的增大而減小,當(dāng)x=82時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋82雙,購進(jìn)乙種運(yùn)動(dòng)鞋118雙.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十字相乘法”能把二次三項(xiàng)式分解因式,對于形如ax2+bxy+cy2的x,y二次三項(xiàng)式來說,方法的關(guān)鍵是把x2項(xiàng)系數(shù)a分解成兩個(gè)因數(shù)a1,a2的積,即a=a1a2,把y2項(xiàng)系數(shù)c分解成兩個(gè)因數(shù),c1,c2的積,即c=c1c2,并使a1c2+a2c1正好等于xy項(xiàng)的系數(shù)b,那么可以直接寫成結(jié)果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)
例:分解因式:x2﹣2xy﹣8y2
解:如右圖,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×(﹣4)+1×2∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y),而對于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法來分解,
如圖1,將a分解成mn乘積作為一列,c分解成pq乘積作為第二列,f分解成jk乘積作為第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都滿足十字相乘規(guī)則,則原式=(mx+py+j)(nx+qy+k);
例:分解因式:x2+2xy﹣3y2+3x+y+2
解:如圖2,其中1=1×1,﹣3=(﹣1)×3,2=1×2;
而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)
請同學(xué)們通過閱讀上述材料,完成下列問題:
(1)分解因式:6x2﹣7xy+2y2= x2﹣6xy+8y2﹣5x+14y+6=
(2)若關(guān)于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成兩個(gè)一次因式的積,求m的值.
(3)已知x,y為整數(shù),且滿足x2+3xy+2y2+2x+4y=﹣1,求x,y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于、兩點(diǎn),與軸相交于點(diǎn),對稱軸為直線,且,則下列結(jié)論:
①;②;③;④關(guān)于的方程有一個(gè)根為,其中正確的結(jié)論個(gè)數(shù)有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角尺的直角頂點(diǎn)放在直尺的一邊上,∠1=30°,
(1)作出△APC的PC邊上的高;
(2)若∠2=51°,求∠3;
(3)若直尺上點(diǎn)P處刻度為2,點(diǎn)C處為8,點(diǎn)M處為3,點(diǎn)N處為7,求S△BMN:S△BPC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.“寒假”期間,某校小記者隨機(jī)調(diào)查了某地區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:
(1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖1;
(2)求圖2中表示家長“贊成”的圓心角的度數(shù);
(3)已知某地區(qū)共6500名家長,估計(jì)其中反對中學(xué)生帶手機(jī)的大約有多少名家長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)(k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界500強(qiáng)H公司決定購買某演唱會門票獎(jiǎng)勵(lì)部分優(yōu)秀員工,演唱會的購票方式有以下兩種,
方式一:若單位贊助廣告費(fèi)10萬元,則該單位所購門票的價(jià)格為每張0.02萬元(其中總費(fèi)用=廣告贊助費(fèi)+門票費(fèi));
方式二:如圖所示,設(shè)購買門票x張,總費(fèi)用為y萬元
(1)求用購票“方式一”時(shí)y與x的函數(shù)關(guān)系式;
(2)若H、A兩家公司分別釆用方式一、方式二購買本場演唱會門票共400張,且A公司購買超過100張,兩公司共花費(fèi)27.2萬元,求H、A兩公司各購買門票多少張?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從地到地的公路需經(jīng)過地,圖中,,,因城市規(guī)劃的需要,將在兩地之間修建一條筆直的公路.
(Ⅰ)求改直的公路的長;
(Ⅱ)問公路改直后比原來縮短了多少?(參考數(shù)據(jù):, , ,取.)(結(jié)果保留小數(shù)點(diǎn)后一位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測量城門大樓的高度,在點(diǎn)B處測得樓頂A的仰角為22°,他正對著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺D處,并測得此時(shí)樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請你求出A,B之間所掛彩旗的長度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com