如圖所示,在△ABC中,∠A=90°,AB=AC=2cm,⊙A與BC相切于點D,陰影部分的面積為(  )精英家教網(wǎng)
A、1+
2
3
π
B、2-
π
2
C、3-
π
3
D、4-
π
4
分析:陰影部分的面積是三角形ABC的面積減去
1
4
圓的面積,根據(jù)勾股定理可求得BC的長,連接AD,由等腰直角三角形的性質(zhì)可得出AD等于BC的一半.
解答:精英家教網(wǎng)解:連接AD,
∵∠A=90°,AB=AC=2cm,
∴由勾股定理得BC=2
2
cm,
∴AD=
1
2
BC,
∴AD=
2
cm,
∴S陰影=S△ABC-
1
4
S=
2×2
2
-
90π•(
2
)
2
360
=2-
π
2

故選B.
點評:本題是一道綜合題,考查了扇形面積的計算以及等腰三角形的性質(zhì),是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案